l2tpns/l2tpns.c
2005-08-10 08:04:26 +00:00

5299 lines
129 KiB
C

// L2TP Network Server
// Adrian Kennard 2002
// Copyright (c) 2003, 2004, 2005 Optus Internet Engineering
// Copyright (c) 2002 FireBrick (Andrews & Arnold Ltd / Watchfront Ltd) - GPL licenced
// vim: sw=8 ts=8
char const *cvs_id_l2tpns = "$Id: l2tpns.c,v 1.117 2005/08/10 08:04:26 bodea Exp $";
#include <arpa/inet.h>
#include <assert.h>
#include <errno.h>
#include <fcntl.h>
#include <linux/if_tun.h>
#define SYSLOG_NAMES
#include <syslog.h>
#include <malloc.h>
#include <math.h>
#include <net/route.h>
#include <sys/mman.h>
#include <netdb.h>
#include <netinet/in.h>
#include <netinet/ip6.h>
#include <stdarg.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <ctype.h>
#include <sys/ioctl.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <sys/resource.h>
#include <sys/wait.h>
#include <linux/if.h>
#include <stddef.h>
#include <time.h>
#include <dlfcn.h>
#include <unistd.h>
#include <sched.h>
#include <sys/sysinfo.h>
#include <libcli.h>
#include "md5.h"
#include "l2tpns.h"
#include "cluster.h"
#include "plugin.h"
#include "ll.h"
#include "constants.h"
#include "control.h"
#include "util.h"
#include "tbf.h"
#ifdef BGP
#include "bgp.h"
#endif
// Globals
configt *config = NULL; // all configuration
int tunfd = -1; // tun interface file handle. (network device)
int udpfd = -1; // UDP file handle
int controlfd = -1; // Control signal handle
int clifd = -1; // Socket listening for CLI connections.
int daefd = -1; // Socket listening for DAE connections.
int snoopfd = -1; // UDP file handle for sending out intercept data
int *radfds = NULL; // RADIUS requests file handles
int ifrfd = -1; // File descriptor for routing, etc
int ifr6fd = -1; // File descriptor for IPv6 routing, etc
int rand_fd = -1; // Random data source
int cluster_sockfd = -1; // Intra-cluster communications socket.
int epollfd = -1; // event polling
time_t basetime = 0; // base clock
char hostname[1000] = ""; // us.
static int tunidx; // ifr_ifindex of tun device
static int syslog_log = 0; // are we logging to syslog
static FILE *log_stream = 0; // file handle for direct logging (i.e. direct into file, not via syslog).
uint32_t last_id = 0; // Unique ID for radius accounting
struct cli_session_actions *cli_session_actions = NULL; // Pending session changes requested by CLI
struct cli_tunnel_actions *cli_tunnel_actions = NULL; // Pending tunnel changes required by CLI
static void *ip_hash[256]; // Mapping from IP address to session structures.
struct ipv6radix {
int sess;
struct ipv6radix *branch;
} ipv6_hash[256]; // Mapping from IPv6 address to session structures.
// Traffic counters.
static uint32_t udp_rx = 0, udp_rx_pkt = 0, udp_tx = 0;
static uint32_t eth_rx = 0, eth_rx_pkt = 0;
uint32_t eth_tx = 0;
static uint32_t ip_pool_size = 1; // Size of the pool of addresses used for dynamic address allocation.
time_t time_now = 0; // Current time in seconds since epoch.
static char time_now_string[64] = {0}; // Current time as a string.
char main_quit = 0; // True if we're in the process of exiting.
linked_list *loaded_plugins;
linked_list *plugins[MAX_PLUGIN_TYPES];
#define membersize(STRUCT, MEMBER) sizeof(((STRUCT *)0)->MEMBER)
#define CONFIG(NAME, MEMBER, TYPE) { NAME, offsetof(configt, MEMBER), membersize(configt, MEMBER), TYPE }
config_descriptt config_values[] = {
CONFIG("debug", debug, INT),
CONFIG("log_file", log_filename, STRING),
CONFIG("pid_file", pid_file, STRING),
CONFIG("random_device", random_device, STRING),
CONFIG("l2tp_secret", l2tpsecret, STRING),
CONFIG("ppp_restart_time", ppp_restart_time, INT),
CONFIG("ppp_max_configure", ppp_max_configure, INT),
CONFIG("ppp_max_failure", ppp_max_failure, INT),
CONFIG("primary_dns", default_dns1, IPv4),
CONFIG("secondary_dns", default_dns2, IPv4),
CONFIG("primary_radius", radiusserver[0], IPv4),
CONFIG("secondary_radius", radiusserver[1], IPv4),
CONFIG("primary_radius_port", radiusport[0], SHORT),
CONFIG("secondary_radius_port", radiusport[1], SHORT),
CONFIG("radius_accounting", radius_accounting, BOOL),
CONFIG("radius_interim", radius_interim, INT),
CONFIG("radius_secret", radiussecret, STRING),
CONFIG("radius_authtypes", radius_authtypes_s, STRING),
CONFIG("radius_dae_port", radius_dae_port, SHORT),
CONFIG("allow_duplicate_users", allow_duplicate_users, BOOL),
CONFIG("bind_address", bind_address, IPv4),
CONFIG("peer_address", peer_address, IPv4),
CONFIG("send_garp", send_garp, BOOL),
CONFIG("throttle_speed", rl_rate, UNSIGNED_LONG),
CONFIG("throttle_buckets", num_tbfs, INT),
CONFIG("accounting_dir", accounting_dir, STRING),
CONFIG("setuid", target_uid, INT),
CONFIG("dump_speed", dump_speed, BOOL),
CONFIG("multi_read_count", multi_read_count, INT),
CONFIG("scheduler_fifo", scheduler_fifo, BOOL),
CONFIG("lock_pages", lock_pages, BOOL),
CONFIG("icmp_rate", icmp_rate, INT),
CONFIG("packet_limit", max_packets, INT),
CONFIG("cluster_address", cluster_address, IPv4),
CONFIG("cluster_interface", cluster_interface, STRING),
CONFIG("cluster_hb_interval", cluster_hb_interval, INT),
CONFIG("cluster_hb_timeout", cluster_hb_timeout, INT),
CONFIG("cluster_master_min_adv", cluster_master_min_adv, INT),
CONFIG("ipv6_prefix", ipv6_prefix, IPv6),
{ NULL, 0, 0, 0 },
};
static char *plugin_functions[] = {
NULL,
"plugin_pre_auth",
"plugin_post_auth",
"plugin_packet_rx",
"plugin_packet_tx",
"plugin_timer",
"plugin_new_session",
"plugin_kill_session",
"plugin_control",
"plugin_radius_response",
"plugin_radius_reset",
"plugin_become_master",
"plugin_new_session_master",
};
#define max_plugin_functions (sizeof(plugin_functions) / sizeof(char *))
// Counters for shutdown sessions
static sessiont shut_acct[8192];
static sessionidt shut_acct_n = 0;
tunnelt *tunnel = NULL; // Array of tunnel structures.
sessiont *session = NULL; // Array of session structures.
sessionlocalt *sess_local = NULL; // Array of local per-session counters.
radiust *radius = NULL; // Array of radius structures.
ippoolt *ip_address_pool = NULL; // Array of dynamic IP addresses.
ip_filtert *ip_filters = NULL; // Array of named filters.
static controlt *controlfree = 0;
struct Tstats *_statistics = NULL;
#ifdef RINGBUFFER
struct Tringbuffer *ringbuffer = NULL;
#endif
static void cache_ipmap(in_addr_t ip, int s);
static void uncache_ipmap(in_addr_t ip);
static void cache_ipv6map(struct in6_addr ip, int prefixlen, int s);
static void free_ip_address(sessionidt s);
static void dump_acct_info(int all);
static void sighup_handler(int sig);
static void sigalrm_handler(int sig);
static void shutdown_handler(int sig);
static void sigchild_handler(int sig);
static void build_chap_response(uint8_t *challenge, uint8_t id, uint16_t challenge_length, uint8_t **challenge_response);
static void update_config(void);
static void read_config_file(void);
static void initplugins(void);
static int add_plugin(char *plugin_name);
static int remove_plugin(char *plugin_name);
static void plugins_done(void);
static void processcontrol(uint8_t *buf, int len, struct sockaddr_in *addr, int alen);
static tunnelidt new_tunnel(void);
static void unhide_value(uint8_t *value, size_t len, uint16_t type, uint8_t *vector, size_t vec_len);
// on slaves, alow BGP to withdraw cleanly before exiting
#define QUIT_DELAY 5
// quit actions (master)
#define QUIT_FAILOVER 1 // SIGTERM: exit when all control messages have been acked (for cluster failover)
#define QUIT_SHUTDOWN 2 // SIGQUIT: shutdown sessions/tunnels, reject new connections
// return internal time (10ths since process startup), set f if given
static clockt now(double *f)
{
struct timeval t;
gettimeofday(&t, 0);
if (f) *f = t.tv_sec + t.tv_usec / 1000000.0;
return (t.tv_sec - basetime) * 10 + t.tv_usec / 100000 + 1;
}
// work out a retry time based on try number
// This is a straight bounded exponential backoff.
// Maximum re-try time is 32 seconds. (2^5).
clockt backoff(uint8_t try)
{
if (try > 5) try = 5; // max backoff
return now(NULL) + 10 * (1 << try);
}
//
// Log a debug message. Typically called via the LOG macro
//
void _log(int level, sessionidt s, tunnelidt t, const char *format, ...)
{
static char message[65536] = {0};
va_list ap;
#ifdef RINGBUFFER
if (ringbuffer)
{
if (++ringbuffer->tail >= RINGBUFFER_SIZE)
ringbuffer->tail = 0;
if (ringbuffer->tail == ringbuffer->head)
if (++ringbuffer->head >= RINGBUFFER_SIZE)
ringbuffer->head = 0;
ringbuffer->buffer[ringbuffer->tail].level = level;
ringbuffer->buffer[ringbuffer->tail].session = s;
ringbuffer->buffer[ringbuffer->tail].tunnel = t;
va_start(ap, format);
vsnprintf(ringbuffer->buffer[ringbuffer->tail].message, 4095, format, ap);
va_end(ap);
}
#endif
if (config->debug < level) return;
va_start(ap, format);
vsnprintf(message, sizeof(message), format, ap);
if (log_stream)
fprintf(log_stream, "%s %02d/%02d %s", time_now_string, t, s, message);
else if (syslog_log)
syslog(level + 2, "%02d/%02d %s", t, s, message); // We don't need LOG_EMERG or LOG_ALERT
va_end(ap);
}
void _log_hex(int level, const char *title, const uint8_t *data, int maxsize)
{
int i, j;
const uint8_t *d = data;
if (config->debug < level) return;
// No support for _log_hex to syslog
if (log_stream)
{
_log(level, 0, 0, "%s (%d bytes):\n", title, maxsize);
setvbuf(log_stream, NULL, _IOFBF, 16384);
for (i = 0; i < maxsize; )
{
fprintf(log_stream, "%4X: ", i);
for (j = i; j < maxsize && j < (i + 16); j++)
{
fprintf(log_stream, "%02X ", d[j]);
if (j == i + 7)
fputs(": ", log_stream);
}
for (; j < i + 16; j++)
{
fputs(" ", log_stream);
if (j == i + 7)
fputs(": ", log_stream);
}
fputs(" ", log_stream);
for (j = i; j < maxsize && j < (i + 16); j++)
{
if (d[j] >= 0x20 && d[j] < 0x7f && d[j] != 0x20)
fputc(d[j], log_stream);
else
fputc('.', log_stream);
if (j == i + 7)
fputs(" ", log_stream);
}
i = j;
fputs("\n", log_stream);
}
fflush(log_stream);
setbuf(log_stream, NULL);
}
}
// update a counter, accumulating 2^32 wraps
void increment_counter(uint32_t *counter, uint32_t *wrap, uint32_t delta)
{
uint32_t new = *counter + delta;
if (new < *counter)
(*wrap)++;
*counter = new;
}
// initialise the random generator
static void initrandom(char *source)
{
static char path[sizeof(config->random_device)] = "*undefined*";
// reinitialise only if we are forced to do so or if the config has changed
if (source && !strncmp(path, source, sizeof(path)))
return;
// close previous source, if any
if (rand_fd >= 0)
close(rand_fd);
rand_fd = -1;
if (source)
{
// register changes
snprintf(path, sizeof(path), "%s", source);
if (*path == '/')
{
rand_fd = open(path, O_RDONLY|O_NONBLOCK);
if (rand_fd < 0)
LOG(0, 0, 0, "Error opening the random device %s: %s\n",
path, strerror(errno));
}
}
}
// fill buffer with random data
void random_data(uint8_t *buf, int len)
{
int n = 0;
CSTAT(random_data);
if (rand_fd >= 0)
{
n = read(rand_fd, buf, len);
if (n >= len) return;
if (n < 0)
{
if (errno != EAGAIN)
{
LOG(0, 0, 0, "Error reading from random source: %s\n",
strerror(errno));
// fall back to rand()
initrandom(NULL);
}
n = 0;
}
}
// append missing data
while (n < len)
// not using the low order bits from the prng stream
buf[n++] = (rand() >> 4) & 0xff;
}
// Add a route
//
// This adds it to the routing table, advertises it
// via BGP if enabled, and stuffs it into the
// 'sessionbyip' cache.
//
// 'ip' and 'mask' must be in _host_ order.
//
static void routeset(sessionidt s, in_addr_t ip, in_addr_t mask, in_addr_t gw, int add)
{
struct rtentry r;
int i;
if (!mask) mask = 0xffffffff;
ip &= mask; // Force the ip to be the first one in the route.
memset(&r, 0, sizeof(r));
r.rt_dev = config->tundevice;
r.rt_dst.sa_family = AF_INET;
*(uint32_t *) & (((struct sockaddr_in *) &r.rt_dst)->sin_addr.s_addr) = htonl(ip);
r.rt_gateway.sa_family = AF_INET;
*(uint32_t *) & (((struct sockaddr_in *) &r.rt_gateway)->sin_addr.s_addr) = htonl(gw);
r.rt_genmask.sa_family = AF_INET;
*(uint32_t *) & (((struct sockaddr_in *) &r.rt_genmask)->sin_addr.s_addr) = htonl(mask);
r.rt_flags = (RTF_UP | RTF_STATIC);
if (gw)
r.rt_flags |= RTF_GATEWAY;
else if (mask == 0xffffffff)
r.rt_flags |= RTF_HOST;
LOG(1, s, 0, "Route %s %s/%s%s%s\n", add ? "add" : "del",
fmtaddr(htonl(ip), 0), fmtaddr(htonl(mask), 1),
gw ? " via" : "", gw ? fmtaddr(htonl(gw), 2) : "");
if (ioctl(ifrfd, add ? SIOCADDRT : SIOCDELRT, (void *) &r) < 0)
LOG(0, 0, 0, "routeset() error in ioctl: %s\n", strerror(errno));
#ifdef BGP
if (add)
bgp_add_route(htonl(ip), htonl(mask));
else
bgp_del_route(htonl(ip), htonl(mask));
#endif /* BGP */
// Add/Remove the IPs to the 'sessionbyip' cache.
// Note that we add the zero address in the case of
// a network route. Roll on CIDR.
// Note that 's == 0' implies this is the address pool.
// We still cache it here, because it will pre-fill
// the malloc'ed tree.
if (s)
{
if (!add) // Are we deleting a route?
s = 0; // Caching the session as '0' is the same as uncaching.
for (i = ip; (i&mask) == (ip&mask) ; ++i)
cache_ipmap(i, s);
}
}
void route6set(sessionidt s, struct in6_addr ip, int prefixlen, int add)
{
struct in6_rtmsg rt;
char ipv6addr[INET6_ADDRSTRLEN];
if (ifr6fd < 0)
{
LOG(0, 0, 0, "Asked to set IPv6 route, but IPv6 not setup.\n");
return;
}
memset(&rt, 0, sizeof(rt));
memcpy(&rt.rtmsg_dst, &ip, sizeof(struct in6_addr));
rt.rtmsg_dst_len = prefixlen;
rt.rtmsg_metric = 1;
rt.rtmsg_flags = RTF_UP;
rt.rtmsg_ifindex = tunidx;
LOG(1, 0, 0, "Route %s %s/%d\n",
add ? "add" : "del",
inet_ntop(AF_INET6, &ip, ipv6addr, INET6_ADDRSTRLEN),
prefixlen);
if (ioctl(ifr6fd, add ? SIOCADDRT : SIOCDELRT, (void *) &rt) < 0)
LOG(0, 0, 0, "route6set() error in ioctl: %s\n",
strerror(errno));
// FIXME: need to add BGP routing (RFC2858)
if (s)
{
if (!add) // Are we deleting a route?
s = 0; // Caching the session as '0' is the same as uncaching.
cache_ipv6map(ip, prefixlen, s);
}
return;
}
// defined in linux/ipv6.h, but tricky to include from user-space
// TODO: move routing to use netlink rather than ioctl
struct in6_ifreq {
struct in6_addr ifr6_addr;
__u32 ifr6_prefixlen;
unsigned int ifr6_ifindex;
};
//
// Set up TUN interface
static void inittun(void)
{
struct ifreq ifr;
struct in6_ifreq ifr6;
struct sockaddr_in sin = {0};
memset(&ifr, 0, sizeof(ifr));
ifr.ifr_flags = IFF_TUN;
tunfd = open(TUNDEVICE, O_RDWR);
if (tunfd < 0)
{ // fatal
LOG(0, 0, 0, "Can't open %s: %s\n", TUNDEVICE, strerror(errno));
exit(1);
}
{
int flags = fcntl(tunfd, F_GETFL, 0);
fcntl(tunfd, F_SETFL, flags | O_NONBLOCK);
}
if (ioctl(tunfd, TUNSETIFF, (void *) &ifr) < 0)
{
LOG(0, 0, 0, "Can't set tun interface: %s\n", strerror(errno));
exit(1);
}
assert(strlen(ifr.ifr_name) < sizeof(config->tundevice));
strncpy(config->tundevice, ifr.ifr_name, sizeof(config->tundevice) - 1);
ifrfd = socket(PF_INET, SOCK_DGRAM, IPPROTO_IP);
sin.sin_family = AF_INET;
sin.sin_addr.s_addr = config->bind_address ? config->bind_address : 0x01010101; // 1.1.1.1
memcpy(&ifr.ifr_addr, &sin, sizeof(struct sockaddr));
if (ioctl(ifrfd, SIOCSIFADDR, (void *) &ifr) < 0)
{
LOG(0, 0, 0, "Error setting tun address: %s\n", strerror(errno));
exit(1);
}
/* Bump up the qlen to deal with bursts from the network */
ifr.ifr_qlen = 1000;
if (ioctl(ifrfd, SIOCSIFTXQLEN, (void *) &ifr) < 0)
{
LOG(0, 0, 0, "Error setting tun queue length: %s\n", strerror(errno));
exit(1);
}
ifr.ifr_flags = IFF_UP;
if (ioctl(ifrfd, SIOCSIFFLAGS, (void *) &ifr) < 0)
{
LOG(0, 0, 0, "Error setting tun flags: %s\n", strerror(errno));
exit(1);
}
if (ioctl(ifrfd, SIOCGIFINDEX, (void *) &ifr) < 0)
{
LOG(0, 0, 0, "Error getting tun ifindex: %s\n", strerror(errno));
exit(1);
}
tunidx = ifr.ifr_ifindex;
// Only setup IPv6 on the tun device if we have a configured prefix
if (config->ipv6_prefix.s6_addr[0]) {
ifr6fd = socket(PF_INET6, SOCK_DGRAM, 0);
// Link local address is FE80::1
memset(&ifr6.ifr6_addr, 0, sizeof(ifr6.ifr6_addr));
ifr6.ifr6_addr.s6_addr[0] = 0xFE;
ifr6.ifr6_addr.s6_addr[1] = 0x80;
ifr6.ifr6_addr.s6_addr[15] = 1;
ifr6.ifr6_prefixlen = 64;
ifr6.ifr6_ifindex = ifr.ifr_ifindex;
if (ioctl(ifr6fd, SIOCSIFADDR, (void *) &ifr6) < 0)
{
LOG(0, 0, 0, "Error setting tun IPv6 link local address:"
" %s\n", strerror(errno));
}
// Global address is prefix::1
memset(&ifr6.ifr6_addr, 0, sizeof(ifr6.ifr6_addr));
ifr6.ifr6_addr = config->ipv6_prefix;
ifr6.ifr6_addr.s6_addr[15] = 1;
ifr6.ifr6_prefixlen = 64;
ifr6.ifr6_ifindex = ifr.ifr_ifindex;
if (ioctl(ifr6fd, SIOCSIFADDR, (void *) &ifr6) < 0)
{
LOG(0, 0, 0, "Error setting tun IPv6 global address: %s\n",
strerror(errno));
}
}
}
// set up UDP ports
static void initudp(void)
{
int on = 1;
struct sockaddr_in addr;
// Tunnel
memset(&addr, 0, sizeof(addr));
addr.sin_family = AF_INET;
addr.sin_port = htons(L2TPPORT);
addr.sin_addr.s_addr = config->bind_address;
udpfd = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
setsockopt(udpfd, SOL_SOCKET, SO_REUSEADDR, &on, sizeof(on));
{
int flags = fcntl(udpfd, F_GETFL, 0);
fcntl(udpfd, F_SETFL, flags | O_NONBLOCK);
}
if (bind(udpfd, (void *) &addr, sizeof(addr)) < 0)
{
LOG(0, 0, 0, "Error in UDP bind: %s\n", strerror(errno));
exit(1);
}
// Control
memset(&addr, 0, sizeof(addr));
addr.sin_family = AF_INET;
addr.sin_port = htons(NSCTL_PORT);
controlfd = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
setsockopt(controlfd, SOL_SOCKET, SO_REUSEADDR, &on, sizeof(on));
if (bind(controlfd, (void *) &addr, sizeof(addr)) < 0)
{
LOG(0, 0, 0, "Error in control bind: %s\n", strerror(errno));
exit(1);
}
// Dynamic Authorization Extensions to RADIUS
memset(&addr, 0, sizeof(addr));
addr.sin_family = AF_INET;
addr.sin_port = htons(config->radius_dae_port);
daefd = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
setsockopt(daefd, SOL_SOCKET, SO_REUSEADDR, &on, sizeof(on));
if (bind(daefd, (void *) &addr, sizeof(addr)) < 0)
{
LOG(0, 0, 0, "Error in DAE bind: %s\n", strerror(errno));
exit(1);
}
// Intercept
snoopfd = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
}
//
// Find session by IP, < 1 for not found
//
// Confusingly enough, this 'ip' must be
// in _network_ order. This being the common
// case when looking it up from IP packet headers.
//
// We actually use this cache for two things.
// #1. For used IP addresses, this maps to the
// session ID that it's used by.
// #2. For un-used IP addresses, this maps to the
// index into the pool table that contains that
// IP address.
//
static int lookup_ipmap(in_addr_t ip)
{
uint8_t *a = (uint8_t *) &ip;
uint8_t **d = (uint8_t **) ip_hash;
if (!(d = (uint8_t **) d[(size_t) *a++])) return 0;
if (!(d = (uint8_t **) d[(size_t) *a++])) return 0;
if (!(d = (uint8_t **) d[(size_t) *a++])) return 0;
return (int) (intptr_t) d[(size_t) *a];
}
static int lookup_ipv6map(struct in6_addr ip)
{
struct ipv6radix *curnode;
int i;
int s;
char ipv6addr[INET6_ADDRSTRLEN];
curnode = &ipv6_hash[ip.s6_addr[0]];
i = 1;
s = curnode->sess;
while (s == 0 && i < 15 && curnode->branch != NULL)
{
curnode = &curnode->branch[ip.s6_addr[i]];
s = curnode->sess;
i++;
}
LOG(4, s, session[s].tunnel, "Looking up address %s and got %d\n",
inet_ntop(AF_INET6, &ip, ipv6addr,
INET6_ADDRSTRLEN),
s);
return s;
}
sessionidt sessionbyip(in_addr_t ip)
{
int s = lookup_ipmap(ip);
CSTAT(sessionbyip);
if (s > 0 && s < MAXSESSION && session[s].opened)
return (sessionidt) s;
return 0;
}
sessionidt sessionbyipv6(struct in6_addr ip)
{
int s;
CSTAT(sessionbyipv6);
if (!memcmp(&config->ipv6_prefix, &ip, 8) ||
(ip.s6_addr[0] == 0xFE &&
ip.s6_addr[1] == 0x80 &&
ip.s6_addr16[1] == 0 &&
ip.s6_addr16[2] == 0 &&
ip.s6_addr16[3] == 0)) {
s = lookup_ipmap(*(in_addr_t *) &ip.s6_addr[8]);
} else {
s = lookup_ipv6map(ip);
}
if (s > 0 && s < MAXSESSION && session[s].opened)
return s;
return 0;
}
//
// Take an IP address in HOST byte order and
// add it to the sessionid by IP cache.
//
// (It's actually cached in network order)
//
static void cache_ipmap(in_addr_t ip, int s)
{
in_addr_t nip = htonl(ip); // MUST be in network order. I.e. MSB must in be ((char *) (&ip))[0]
uint8_t *a = (uint8_t *) &nip;
uint8_t **d = (uint8_t **) ip_hash;
int i;
for (i = 0; i < 3; i++)
{
if (!d[(size_t) a[i]])
{
if (!(d[(size_t) a[i]] = calloc(256, sizeof(void *))))
return;
}
d = (uint8_t **) d[(size_t) a[i]];
}
d[(size_t) a[3]] = (uint8_t *) (intptr_t) s;
if (s > 0)
LOG(4, s, session[s].tunnel, "Caching ip address %s\n", fmtaddr(nip, 0));
else if (s == 0)
LOG(4, 0, 0, "Un-caching ip address %s\n", fmtaddr(nip, 0));
// else a map to an ip pool index.
}
static void uncache_ipmap(in_addr_t ip)
{
cache_ipmap(ip, 0); // Assign it to the NULL session.
}
static void cache_ipv6map(struct in6_addr ip, int prefixlen, int s)
{
int i;
int bytes;
struct ipv6radix *curnode;
char ipv6addr[INET6_ADDRSTRLEN];
curnode = &ipv6_hash[ip.s6_addr[0]];
bytes = prefixlen >> 3;
i = 1;
while (i < bytes) {
if (curnode->branch == NULL)
{
if (!(curnode->branch = calloc(256,
sizeof (struct ipv6radix))))
return;
}
curnode = &curnode->branch[ip.s6_addr[i]];
i++;
}
curnode->sess = s;
if (s > 0)
LOG(4, s, session[s].tunnel, "Caching ip address %s/%d\n",
inet_ntop(AF_INET6, &ip, ipv6addr,
INET6_ADDRSTRLEN),
prefixlen);
else if (s == 0)
LOG(4, 0, 0, "Un-caching ip address %s/%d\n",
inet_ntop(AF_INET6, &ip, ipv6addr,
INET6_ADDRSTRLEN),
prefixlen);
}
//
// CLI list to dump current ipcache.
//
int cmd_show_ipcache(struct cli_def *cli, char *command, char **argv, int argc)
{
char **d = (char **) ip_hash, **e, **f, **g;
int i, j, k, l;
int count = 0;
if (CLI_HELP_REQUESTED)
return CLI_HELP_NO_ARGS;
cli_print(cli, "%7s %s", "Sess#", "IP Address");
for (i = 0; i < 256; ++i)
{
if (!d[i])
continue;
e = (char **) d[i];
for (j = 0; j < 256; ++j)
{
if (!e[j])
continue;
f = (char **) e[j];
for (k = 0; k < 256; ++k)
{
if (!f[k])
continue;
g = (char **)f[k];
for (l = 0; l < 256; ++l)
{
if (!g[l])
continue;
cli_print(cli, "%7d %d.%d.%d.%d", (int) (intptr_t) g[l], i, j, k, l);
++count;
}
}
}
}
cli_print(cli, "%d entries in cache", count);
return CLI_OK;
}
// Find session by username, 0 for not found
// walled garden users aren't authenticated, so the username is
// reasonably useless. Ignore them to avoid incorrect actions
//
// This is VERY inefficent. Don't call it often. :)
//
sessionidt sessionbyuser(char *username)
{
int s;
CSTAT(sessionbyuser);
for (s = 1; s <= config->cluster_highest_sessionid ; ++s)
{
if (!session[s].opened)
continue;
if (session[s].walled_garden)
continue; // Skip walled garden users.
if (!strncmp(session[s].user, username, 128))
return s;
}
return 0; // Not found.
}
void send_garp(in_addr_t ip)
{
int s;
struct ifreq ifr;
uint8_t mac[6];
s = socket(PF_INET, SOCK_DGRAM, 0);
if (s < 0)
{
LOG(0, 0, 0, "Error creating socket for GARP: %s\n", strerror(errno));
return;
}
memset(&ifr, 0, sizeof(ifr));
strncpy(ifr.ifr_name, "eth0", sizeof(ifr.ifr_name) - 1);
if (ioctl(s, SIOCGIFHWADDR, &ifr) < 0)
{
LOG(0, 0, 0, "Error getting eth0 hardware address for GARP: %s\n", strerror(errno));
close(s);
return;
}
memcpy(mac, &ifr.ifr_hwaddr.sa_data, 6*sizeof(char));
if (ioctl(s, SIOCGIFINDEX, &ifr) < 0)
{
LOG(0, 0, 0, "Error getting eth0 interface index for GARP: %s\n", strerror(errno));
close(s);
return;
}
close(s);
sendarp(ifr.ifr_ifindex, mac, ip);
}
static sessiont *sessiontbysessionidt(sessionidt s)
{
if (!s || s >= MAXSESSION) return NULL;
return &session[s];
}
static sessionidt sessionidtbysessiont(sessiont *s)
{
sessionidt val = s-session;
if (s < session || val >= MAXSESSION) return 0;
return val;
}
// actually send a control message for a specific tunnel
void tunnelsend(uint8_t * buf, uint16_t l, tunnelidt t)
{
struct sockaddr_in addr;
CSTAT(tunnelsend);
if (!t)
{
static int backtrace_count = 0;
LOG(0, 0, t, "tunnelsend called with 0 as tunnel id\n");
STAT(tunnel_tx_errors);
log_backtrace(backtrace_count, 5)
return;
}
if (!tunnel[t].ip)
{
static int backtrace_count = 0;
LOG(1, 0, t, "Error sending data out tunnel: no remote endpoint (tunnel not set up)\n");
log_backtrace(backtrace_count, 5)
STAT(tunnel_tx_errors);
return;
}
memset(&addr, 0, sizeof(addr));
addr.sin_family = AF_INET;
*(uint32_t *) & addr.sin_addr = htonl(tunnel[t].ip);
addr.sin_port = htons(tunnel[t].port);
// sequence expected, if sequence in message
if (*buf & 0x08) *(uint16_t *) (buf + ((*buf & 0x40) ? 10 : 8)) = htons(tunnel[t].nr);
// If this is a control message, deal with retries
if (*buf & 0x80)
{
tunnel[t].last = time_now; // control message sent
tunnel[t].retry = backoff(tunnel[t].try); // when to resend
if (tunnel[t].try > 1)
{
STAT(tunnel_retries);
LOG(3, 0, t, "Control message resend try %d\n", tunnel[t].try);
}
}
if (sendto(udpfd, buf, l, 0, (void *) &addr, sizeof(addr)) < 0)
{
LOG(0, ntohs((*(uint16_t *) (buf + 6))), t, "Error sending data out tunnel: %s (udpfd=%d, buf=%p, len=%d, dest=%s)\n",
strerror(errno), udpfd, buf, l, inet_ntoa(addr.sin_addr));
STAT(tunnel_tx_errors);
return;
}
LOG_HEX(5, "Send Tunnel Data", buf, l);
STAT(tunnel_tx_packets);
INC_STAT(tunnel_tx_bytes, l);
}
//
// Tiny helper function to write data to
// the 'tun' device.
//
int tun_write(uint8_t * data, int size)
{
return write(tunfd, data, size);
}
// process outgoing (to tunnel) IP
//
static void processipout(uint8_t *buf, int len)
{
sessionidt s;
sessiont *sp;
tunnelidt t;
in_addr_t ip;
uint8_t *data = buf; // Keep a copy of the originals.
int size = len;
uint8_t b[MAXETHER + 20];
CSTAT(processipout);
if (len < MIN_IP_SIZE)
{
LOG(1, 0, 0, "Short IP, %d bytes\n", len);
STAT(tun_rx_errors);
return;
}
if (len >= MAXETHER)
{
LOG(1, 0, 0, "Oversize IP packet %d bytes\n", len);
STAT(tun_rx_errors);
return;
}
// Skip the tun header
buf += 4;
len -= 4;
// Got an IP header now
if (*(uint8_t *)(buf) >> 4 != 4)
{
LOG(1, 0, 0, "IP: Don't understand anything except IPv4\n");
return;
}
ip = *(uint32_t *)(buf + 16);
if (!(s = sessionbyip(ip)))
{
// Is this a packet for a session that doesn't exist?
static int rate = 0; // Number of ICMP packets we've sent this second.
static int last = 0; // Last time we reset the ICMP packet counter 'rate'.
if (last != time_now)
{
last = time_now;
rate = 0;
}
if (rate++ < config->icmp_rate) // Only send a max of icmp_rate per second.
{
LOG(4, 0, 0, "IP: Sending ICMP host unreachable to %s\n", fmtaddr(*(in_addr_t *)(buf + 12), 0));
host_unreachable(*(in_addr_t *)(buf + 12), *(uint16_t *)(buf + 4),
config->bind_address ? config->bind_address : my_address, buf, len);
}
return;
}
t = session[s].tunnel;
sp = &session[s];
// DoS prevention: enforce a maximum number of packets per 0.1s for a session
if (config->max_packets > 0)
{
if (sess_local[s].last_packet_out == TIME)
{
int max = config->max_packets;
// All packets for throttled sessions are handled by the
// master, so further limit by using the throttle rate.
// A bit of a kludge, since throttle rate is in kbps,
// but should still be generous given our average DSL
// packet size is 200 bytes: a limit of 28kbps equates
// to around 180 packets per second.
if (!config->cluster_iam_master && sp->throttle_out && sp->throttle_out < max)
max = sp->throttle_out;
if (++sess_local[s].packets_out > max)
{
sess_local[s].packets_dropped++;
return;
}
}
else
{
if (sess_local[s].packets_dropped)
{
INC_STAT(tun_rx_dropped, sess_local[s].packets_dropped);
LOG(3, s, t, "Dropped %u/%u packets to %s for %suser %s\n",
sess_local[s].packets_dropped, sess_local[s].packets_out,
fmtaddr(ip, 0), sp->throttle_out ? "throttled " : "",
sp->user);
}
sess_local[s].last_packet_out = TIME;
sess_local[s].packets_out = 1;
sess_local[s].packets_dropped = 0;
}
}
// run access-list if any
if (session[s].filter_out && !ip_filter(buf, len, session[s].filter_out - 1))
return;
if (sp->tbf_out)
{
// Are we throttling this session?
if (config->cluster_iam_master)
tbf_queue_packet(sp->tbf_out, data, size);
else
master_throttle_packet(sp->tbf_out, data, size);
return;
}
else if (sp->walled_garden && !config->cluster_iam_master)
{
// We are walled-gardening this
master_garden_packet(s, data, size);
return;
}
LOG(5, s, t, "Ethernet -> Tunnel (%d bytes)\n", len);
// Add on L2TP header
{
uint8_t *p = makeppp(b, sizeof(b), buf, len, t, s, PPPIP);
if (!p) return;
tunnelsend(b, len + (p-b), t); // send it...
}
// Snooping this session, send it to intercept box
if (sp->snoop_ip && sp->snoop_port)
snoop_send_packet(buf, len, sp->snoop_ip, sp->snoop_port);
increment_counter(&sp->cout, &sp->cout_wrap, len); // byte count
sp->cout_delta += len;
sp->pout++;
udp_tx += len;
sess_local[s].cout += len; // To send to master..
sess_local[s].pout++;
}
// process outgoing (to tunnel) IPv6
//
static void processipv6out(uint8_t * buf, int len)
{
sessionidt s;
sessiont *sp;
tunnelidt t;
in_addr_t ip;
struct in6_addr ip6;
uint8_t *data = buf; // Keep a copy of the originals.
int size = len;
uint8_t b[MAXETHER + 20];
CSTAT(processipv6out);
if (len < MIN_IP_SIZE)
{
LOG(1, 0, 0, "Short IPv6, %d bytes\n", len);
STAT(tunnel_tx_errors);
return;
}
if (len >= MAXETHER)
{
LOG(1, 0, 0, "Oversize IPv6 packet %d bytes\n", len);
STAT(tunnel_tx_errors);
return;
}
// Skip the tun header
buf += 4;
len -= 4;
// Got an IP header now
if (*(uint8_t *)(buf) >> 4 != 6)
{
LOG(1, 0, 0, "IP: Don't understand anything except IPv6\n");
return;
}
ip6 = *(struct in6_addr *)(buf+24);
s = sessionbyipv6(ip6);
if (s == 0)
{
ip = *(uint32_t *)(buf + 32);
s = sessionbyip(ip);
}
if (s == 0)
{
// Is this a packet for a session that doesn't exist?
static int rate = 0; // Number of ICMP packets we've sent this second.
static int last = 0; // Last time we reset the ICMP packet counter 'rate'.
if (last != time_now)
{
last = time_now;
rate = 0;
}
if (rate++ < config->icmp_rate) // Only send a max of icmp_rate per second.
{
// FIXME: Should send icmp6 host unreachable
}
return;
}
t = session[s].tunnel;
sp = &session[s];
// FIXME: add DoS prevention/filters?
if (sp->tbf_out)
{
// Are we throttling this session?
if (config->cluster_iam_master)
tbf_queue_packet(sp->tbf_out, data, size);
else
master_throttle_packet(sp->tbf_out, data, size);
return;
}
else if (sp->walled_garden && !config->cluster_iam_master)
{
// We are walled-gardening this
master_garden_packet(s, data, size);
return;
}
LOG(5, s, t, "Ethernet -> Tunnel (%d bytes)\n", len);
// Add on L2TP header
{
uint8_t *p = makeppp(b, sizeof(b), buf, len, t, s, PPPIPV6);
if (!p) return;
tunnelsend(b, len + (p-b), t); // send it...
}
// Snooping this session, send it to intercept box
if (sp->snoop_ip && sp->snoop_port)
snoop_send_packet(buf, len, sp->snoop_ip, sp->snoop_port);
increment_counter(&sp->cout, &sp->cout_wrap, len); // byte count
sp->cout_delta += len;
sp->pout++;
udp_tx += len;
sess_local[s].cout += len; // To send to master..
sess_local[s].pout++;
}
//
// Helper routine for the TBF filters.
// Used to send queued data in to the user!
//
static void send_ipout(sessionidt s, uint8_t *buf, int len)
{
sessiont *sp;
tunnelidt t;
in_addr_t ip;
uint8_t b[MAXETHER + 20];
if (len < 0 || len > MAXETHER)
{
LOG(1, 0, 0, "Odd size IP packet: %d bytes\n", len);
return;
}
// Skip the tun header
buf += 4;
len -= 4;
ip = *(in_addr_t *)(buf + 16);
if (!session[s].ip)
return;
t = session[s].tunnel;
sp = &session[s];
LOG(5, s, t, "Ethernet -> Tunnel (%d bytes)\n", len);
// Add on L2TP header
{
uint8_t *p = makeppp(b, sizeof(b), buf, len, t, s, PPPIP);
if (!p) return;
tunnelsend(b, len + (p-b), t); // send it...
}
// Snooping this session.
if (sp->snoop_ip && sp->snoop_port)
snoop_send_packet(buf, len, sp->snoop_ip, sp->snoop_port);
increment_counter(&sp->cout, &sp->cout_wrap, len); // byte count
sp->cout_delta += len;
sp->pout++;
udp_tx += len;
sess_local[s].cout += len; // To send to master..
sess_local[s].pout++;
}
// add an AVP (16 bit)
static void control16(controlt * c, uint16_t avp, uint16_t val, uint8_t m)
{
uint16_t l = (m ? 0x8008 : 0x0008);
*(uint16_t *) (c->buf + c->length + 0) = htons(l);
*(uint16_t *) (c->buf + c->length + 2) = htons(0);
*(uint16_t *) (c->buf + c->length + 4) = htons(avp);
*(uint16_t *) (c->buf + c->length + 6) = htons(val);
c->length += 8;
}
// add an AVP (32 bit)
static void control32(controlt * c, uint16_t avp, uint32_t val, uint8_t m)
{
uint16_t l = (m ? 0x800A : 0x000A);
*(uint16_t *) (c->buf + c->length + 0) = htons(l);
*(uint16_t *) (c->buf + c->length + 2) = htons(0);
*(uint16_t *) (c->buf + c->length + 4) = htons(avp);
*(uint32_t *) (c->buf + c->length + 6) = htonl(val);
c->length += 10;
}
// add an AVP (string)
static void controls(controlt * c, uint16_t avp, char *val, uint8_t m)
{
uint16_t l = ((m ? 0x8000 : 0) + strlen(val) + 6);
*(uint16_t *) (c->buf + c->length + 0) = htons(l);
*(uint16_t *) (c->buf + c->length + 2) = htons(0);
*(uint16_t *) (c->buf + c->length + 4) = htons(avp);
memcpy(c->buf + c->length + 6, val, strlen(val));
c->length += 6 + strlen(val);
}
// add a binary AVP
static void controlb(controlt * c, uint16_t avp, uint8_t *val, unsigned int len, uint8_t m)
{
uint16_t l = ((m ? 0x8000 : 0) + len + 6);
*(uint16_t *) (c->buf + c->length + 0) = htons(l);
*(uint16_t *) (c->buf + c->length + 2) = htons(0);
*(uint16_t *) (c->buf + c->length + 4) = htons(avp);
memcpy(c->buf + c->length + 6, val, len);
c->length += 6 + len;
}
// new control connection
static controlt *controlnew(uint16_t mtype)
{
controlt *c;
if (!controlfree)
c = malloc(sizeof(controlt));
else
{
c = controlfree;
controlfree = c->next;
}
assert(c);
c->next = 0;
*(uint16_t *) (c->buf + 0) = htons(0xC802); // flags/ver
c->length = 12;
control16(c, 0, mtype, 1);
return c;
}
// send zero block if nothing is waiting
// (ZLB send).
static void controlnull(tunnelidt t)
{
uint8_t buf[12];
if (tunnel[t].controlc) // Messages queued; They will carry the ack.
return;
*(uint16_t *) (buf + 0) = htons(0xC802); // flags/ver
*(uint16_t *) (buf + 2) = htons(12); // length
*(uint16_t *) (buf + 4) = htons(tunnel[t].far); // tunnel
*(uint16_t *) (buf + 6) = htons(0); // session
*(uint16_t *) (buf + 8) = htons(tunnel[t].ns); // sequence
*(uint16_t *) (buf + 10) = htons(tunnel[t].nr); // sequence
tunnelsend(buf, 12, t);
}
// add a control message to a tunnel, and send if within window
static void controladd(controlt * c, tunnelidt t, sessionidt far)
{
*(uint16_t *) (c->buf + 2) = htons(c->length); // length
*(uint16_t *) (c->buf + 4) = htons(tunnel[t].far); // tunnel
*(uint16_t *) (c->buf + 6) = htons(far); // session
*(uint16_t *) (c->buf + 8) = htons(tunnel[t].ns); // sequence
tunnel[t].ns++; // advance sequence
// link in message in to queue
if (tunnel[t].controlc)
tunnel[t].controle->next = c;
else
tunnel[t].controls = c;
tunnel[t].controle = c;
tunnel[t].controlc++;
// send now if space in window
if (tunnel[t].controlc <= tunnel[t].window)
{
tunnel[t].try = 0; // first send
tunnelsend(c->buf, c->length, t);
}
}
//
// Throttle or Unthrottle a session
//
// Throttle the data from/to through a session to no more than
// 'rate_in' kbit/sec in (from user) or 'rate_out' kbit/sec out (to
// user).
//
// If either value is -1, the current value is retained for that
// direction.
//
void throttle_session(sessionidt s, int rate_in, int rate_out)
{
if (!session[s].opened)
return; // No-one home.
if (!*session[s].user)
return; // User not logged in
if (rate_in >= 0)
{
int bytes = rate_in * 1024 / 8; // kbits to bytes
if (session[s].tbf_in)
free_tbf(session[s].tbf_in);
if (rate_in > 0)
session[s].tbf_in = new_tbf(s, bytes * 2, bytes, send_ipin);
else
session[s].tbf_in = 0;
session[s].throttle_in = rate_in;
}
if (rate_out >= 0)
{
int bytes = rate_out * 1024 / 8;
if (session[s].tbf_out)
free_tbf(session[s].tbf_out);
if (rate_out > 0)
session[s].tbf_out = new_tbf(s, bytes * 2, bytes, send_ipout);
else
session[s].tbf_out = 0;
session[s].throttle_out = rate_out;
}
}
// add/remove filters from session (-1 = no change)
void filter_session(sessionidt s, int filter_in, int filter_out)
{
if (!session[s].opened)
return; // No-one home.
if (!*session[s].user)
return; // User not logged in
// paranoia
if (filter_in > MAXFILTER) filter_in = -1;
if (filter_out > MAXFILTER) filter_out = -1;
if (session[s].filter_in > MAXFILTER) session[s].filter_in = 0;
if (session[s].filter_out > MAXFILTER) session[s].filter_out = 0;
if (filter_in >= 0)
{
if (session[s].filter_in)
ip_filters[session[s].filter_in - 1].used--;
if (filter_in > 0)
ip_filters[filter_in - 1].used++;
session[s].filter_in = filter_in;
}
if (filter_out >= 0)
{
if (session[s].filter_out)
ip_filters[session[s].filter_out - 1].used--;
if (filter_out > 0)
ip_filters[filter_out - 1].used++;
session[s].filter_out = filter_out;
}
}
// start tidy shutdown of session
void sessionshutdown(sessionidt s, char *reason, int result, int error)
{
int walled_garden = session[s].walled_garden;
CSTAT(sessionshutdown);
if (!session[s].opened)
{
LOG(3, s, session[s].tunnel, "Called sessionshutdown on an unopened session.\n");
return; // not a live session
}
if (!session[s].die)
{
struct param_kill_session data = { &tunnel[session[s].tunnel], &session[s] };
LOG(2, s, session[s].tunnel, "Shutting down session %d: %s\n", s, reason);
run_plugins(PLUGIN_KILL_SESSION, &data);
}
if (session[s].ip && !walled_garden && !session[s].die)
{
// RADIUS Stop message
uint16_t r = radiusnew(s);
if (r)
{
// stop, if not already trying
if (radius[r].state != RADIUSSTOP)
radiussend(r, RADIUSSTOP);
}
else
LOG(1, s, session[s].tunnel, "No free RADIUS sessions for Stop message\n");
// Save counters to dump to accounting file
if (*config->accounting_dir && shut_acct_n < sizeof(shut_acct) / sizeof(*shut_acct))
memcpy(&shut_acct[shut_acct_n++], &session[s], sizeof(session[s]));
}
if (session[s].ip)
{ // IP allocated, clear and unroute
int r;
int routed = 0;
for (r = 0; r < MAXROUTE && session[s].route[r].ip; r++)
{
if ((session[s].ip & session[s].route[r].mask) ==
(session[s].route[r].ip & session[s].route[r].mask))
routed++;
routeset(s, session[s].route[r].ip, session[s].route[r].mask, 0, 0);
session[s].route[r].ip = 0;
}
if (session[s].ip_pool_index == -1) // static ip
{
if (!routed) routeset(s, session[s].ip, 0, 0, 0);
session[s].ip = 0;
}
else
free_ip_address(s);
// unroute IPv6, if setup
if (session[s].ppp.ipv6cp == Opened && session[s].ipv6prefixlen)
route6set(s, session[s].ipv6route, session[s].ipv6prefixlen, 0);
}
if (session[s].throttle_in || session[s].throttle_out) // Unthrottle if throttled.
throttle_session(s, 0, 0);
if (result)
{ // Send CDN
controlt *c = controlnew(14); // sending CDN
if (error)
{
uint8_t buf[4];
*(uint16_t *) buf = htons(result);
*(uint16_t *) (buf+2) = htons(error);
controlb(c, 1, buf, 4, 1);
}
else
control16(c, 1, result, 1);
control16(c, 14, s, 1); // assigned session (our end)
controladd(c, session[s].tunnel, session[s].far); // send the message
}
if (!session[s].die)
session[s].die = TIME + 150; // Clean up in 15 seconds
// update filter refcounts
if (session[s].filter_in) ip_filters[session[s].filter_in - 1].used--;
if (session[s].filter_out) ip_filters[session[s].filter_out - 1].used--;
// clear PPP state
memset(&session[s].ppp, 0, sizeof(session[s].ppp));
sess_local[s].lcp.restart = 0;
sess_local[s].ipcp.restart = 0;
sess_local[s].ipv6cp.restart = 0;
sess_local[s].ccp.restart = 0;
cluster_send_session(s);
}
void sendipcp(tunnelidt t, sessionidt s)
{
uint8_t buf[MAXCONTROL];
uint8_t *q;
CSTAT(sendipcp);
if (!session[s].unique_id)
{
if (!++last_id) ++last_id; // skip zero
session[s].unique_id = last_id;
}
q = makeppp(buf,sizeof(buf), 0, 0, t, s, PPPIPCP);
if (!q) return;
*q = ConfigReq;
q[1] = session[s].unique_id & 0xf; // ID, dont care, we only send one type of request
*(uint16_t *) (q + 2) = htons(10); // packet length
q[4] = 3; // ip address option
q[5] = 6; // option length
*(in_addr_t *) (q + 6) = config->peer_address ? config->peer_address :
config->bind_address ? config->bind_address :
my_address; // send my IP
tunnelsend(buf, 10 + (q - buf), t); // send it
}
void sendipv6cp(tunnelidt t, sessionidt s)
{
uint8_t buf[MAXCONTROL];
uint8_t *q;
CSTAT(sendipv6cp);
q = makeppp(buf,sizeof(buf), 0, 0, t, s, PPPIPV6CP);
if (!q) return;
*q = ConfigReq;
q[1] = session[s].unique_id & 0xf; // ID, don't care, we
// only send one type
// of request
*(uint16_t *) (q + 2) = htons(14);
q[4] = 1; // interface identifier option
q[5] = 10; // option length
*(uint32_t *) (q + 6) = 0; // We'll be prefix::1
*(uint32_t *) (q + 10) = 0;
q[13] = 1;
tunnelsend(buf, 14 + (q - buf), t); // send it
}
static void sessionclear(sessionidt s)
{
memset(&session[s], 0, sizeof(session[s]));
memset(&sess_local[s], 0, sizeof(sess_local[s]));
memset(&cli_session_actions[s], 0, sizeof(cli_session_actions[s]));
session[s].tunnel = T_FREE; // Mark it as free.
session[s].next = sessionfree;
sessionfree = s;
}
// kill a session now
void sessionkill(sessionidt s, char *reason)
{
CSTAT(sessionkill);
if (!session[s].opened) // not alive
return;
if (session[s].next)
{
LOG(0, s, session[s].tunnel, "Tried to kill a session with next pointer set (%d)\n", session[s].next);
return;
}
session[s].die = TIME;
sessionshutdown(s, reason, 3, 0); // close radius/routes, etc.
if (sess_local[s].radius)
radiusclear(sess_local[s].radius, s); // cant send clean accounting data, session is killed
LOG(2, s, session[s].tunnel, "Kill session %d (%s): %s\n", s, session[s].user, reason);
sessionclear(s);
cluster_send_session(s);
}
static void tunnelclear(tunnelidt t)
{
if (!t) return;
memset(&tunnel[t], 0, sizeof(tunnel[t]));
tunnel[t].state = TUNNELFREE;
}
// kill a tunnel now
static void tunnelkill(tunnelidt t, char *reason)
{
sessionidt s;
controlt *c;
CSTAT(tunnelkill);
tunnel[t].state = TUNNELDIE;
// free control messages
while ((c = tunnel[t].controls))
{
controlt * n = c->next;
tunnel[t].controls = n;
tunnel[t].controlc--;
c->next = controlfree;
controlfree = c;
}
// kill sessions
for (s = 1; s <= config->cluster_highest_sessionid ; ++s)
if (session[s].tunnel == t)
sessionkill(s, reason);
// free tunnel
tunnelclear(t);
LOG(1, 0, t, "Kill tunnel %d: %s\n", t, reason);
cli_tunnel_actions[t].action = 0;
cluster_send_tunnel(t);
}
// shut down a tunnel cleanly
static void tunnelshutdown(tunnelidt t, char *reason, int result, int error, char *msg)
{
sessionidt s;
CSTAT(tunnelshutdown);
if (!tunnel[t].last || !tunnel[t].far || tunnel[t].state == TUNNELFREE)
{
// never set up, can immediately kill
tunnelkill(t, reason);
return;
}
LOG(1, 0, t, "Shutting down tunnel %d (%s)\n", t, reason);
// close session
for (s = 1; s <= config->cluster_highest_sessionid ; ++s)
if (session[s].tunnel == t)
sessionshutdown(s, reason, 0, 0);
tunnel[t].state = TUNNELDIE;
tunnel[t].die = TIME + 700; // Clean up in 70 seconds
cluster_send_tunnel(t);
// TBA - should we wait for sessions to stop?
if (result)
{
controlt *c = controlnew(4); // sending StopCCN
if (error)
{
uint8_t buf[64];
int l = 4;
*(uint16_t *) buf = htons(result);
*(uint16_t *) (buf+2) = htons(error);
if (msg)
{
int m = strlen(msg);
if (m + 4 > sizeof(buf))
m = sizeof(buf) - 4;
memcpy(buf+4, msg, m);
l += m;
}
controlb(c, 1, buf, l, 1);
}
else
control16(c, 1, result, 1);
control16(c, 9, t, 1); // assigned tunnel (our end)
controladd(c, t, 0); // send the message
}
}
// read and process packet on tunnel (UDP)
void processudp(uint8_t *buf, int len, struct sockaddr_in *addr)
{
uint8_t *chapresponse = NULL;
uint16_t l = len, t = 0, s = 0, ns = 0, nr = 0;
uint8_t *p = buf + 2;
CSTAT(processudp);
udp_rx += len;
udp_rx_pkt++;
LOG_HEX(5, "UDP Data", buf, len);
STAT(tunnel_rx_packets);
INC_STAT(tunnel_rx_bytes, len);
if (len < 6)
{
LOG(1, 0, 0, "Short UDP, %d bytes\n", len);
STAT(tunnel_rx_errors);
return;
}
if ((buf[1] & 0x0F) != 2)
{
LOG(1, 0, 0, "Bad L2TP ver %d\n", (buf[1] & 0x0F) != 2);
STAT(tunnel_rx_errors);
return;
}
if (*buf & 0x40)
{ // length
l = ntohs(*(uint16_t *) p);
p += 2;
}
t = ntohs(*(uint16_t *) p);
p += 2;
s = ntohs(*(uint16_t *) p);
p += 2;
if (s >= MAXSESSION)
{
LOG(1, s, t, "Received UDP packet with invalid session ID\n");
STAT(tunnel_rx_errors);
return;
}
if (t >= MAXTUNNEL)
{
LOG(1, s, t, "Received UDP packet with invalid tunnel ID\n");
STAT(tunnel_rx_errors);
return;
}
if (*buf & 0x08)
{ // ns/nr
ns = ntohs(*(uint16_t *) p);
p += 2;
nr = ntohs(*(uint16_t *) p);
p += 2;
}
if (*buf & 0x02)
{ // offset
uint16_t o = ntohs(*(uint16_t *) p);
p += o + 2;
}
if ((p - buf) > l)
{
LOG(1, s, t, "Bad length %d>%d\n", (int) (p - buf), l);
STAT(tunnel_rx_errors);
return;
}
l -= (p - buf);
if (*buf & 0x80)
{ // control
uint16_t message = 0xFFFF; // message type
uint8_t fatal = 0;
uint8_t mandatory = 0;
uint8_t authtype = 0; // proxy auth type
uint16_t asession = 0; // assigned session
uint32_t amagic = 0; // magic number
uint8_t aflags = 0; // flags from last LCF
uint16_t version = 0x0100; // protocol version (we handle 0.0 as well and send that back just in case)
char called[MAXTEL] = ""; // called number
char calling[MAXTEL] = ""; // calling number
if (!config->cluster_iam_master)
{
master_forward_packet(buf, len, addr->sin_addr.s_addr, addr->sin_port);
return;
}
// control messages must have bits 0x80|0x40|0x08
// (type, length and sequence) set, and bits 0x02|0x01
// (offset and priority) clear
if ((*buf & 0xCB) != 0xC8)
{
LOG(1, s, t, "Bad control header %02X\n", *buf);
STAT(tunnel_rx_errors);
return;
}
// check for duplicate tunnel open message
if (!t && ns == 0)
{
int i;
//
// Is this a duplicate of the first packet? (SCCRQ)
//
for (i = 1; i <= config->cluster_highest_tunnelid ; ++i)
{
if (tunnel[i].state != TUNNELOPENING ||
tunnel[i].ip != ntohl(*(in_addr_t *) & addr->sin_addr) ||
tunnel[i].port != ntohs(addr->sin_port) )
continue;
t = i;
LOG(3, s, t, "Duplicate SCCRQ?\n");
break;
}
}
LOG(3, s, t, "Control message (%d bytes): (unacked %d) l-ns %d l-nr %d r-ns %d r-nr %d\n",
l, tunnel[t].controlc, tunnel[t].ns, tunnel[t].nr, ns, nr);
// if no tunnel specified, assign one
if (!t)
{
if (!(t = new_tunnel()))
{
LOG(1, 0, 0, "No more tunnels\n");
STAT(tunnel_overflow);
return;
}
tunnelclear(t);
tunnel[t].ip = ntohl(*(in_addr_t *) & addr->sin_addr);
tunnel[t].port = ntohs(addr->sin_port);
tunnel[t].window = 4; // default window
STAT(tunnel_created);
LOG(1, 0, t, " New tunnel from %s:%u ID %d\n",
fmtaddr(htonl(tunnel[t].ip), 0), tunnel[t].port, t);
}
// If the 'ns' just received is not the 'nr' we're
// expecting, just send an ack and drop it.
//
// if 'ns' is less, then we got a retransmitted packet.
// if 'ns' is greater than missed a packet. Either way
// we should ignore it.
if (ns != tunnel[t].nr)
{
// is this the sequence we were expecting?
STAT(tunnel_rx_errors);
LOG(1, 0, t, " Out of sequence tunnel %d, (%d is not the expected %d)\n",
t, ns, tunnel[t].nr);
if (l) // Is this not a ZLB?
controlnull(t);
return;
}
// This is used to time out old tunnels
tunnel[t].lastrec = time_now;
// check sequence of this message
{
int skip = tunnel[t].window; // track how many in-window packets are still in queue
// some to clear maybe?
while (tunnel[t].controlc > 0 && (((tunnel[t].ns - tunnel[t].controlc) - nr) & 0x8000))
{
controlt *c = tunnel[t].controls;
tunnel[t].controls = c->next;
tunnel[t].controlc--;
c->next = controlfree;
controlfree = c;
skip--;
tunnel[t].try = 0; // we have progress
}
// receiver advance (do here so quoted correctly in any sends below)
if (l) tunnel[t].nr = (ns + 1);
if (skip < 0) skip = 0;
if (skip < tunnel[t].controlc)
{
// some control packets can now be sent that were previous stuck out of window
int tosend = tunnel[t].window - skip;
controlt *c = tunnel[t].controls;
while (c && skip)
{
c = c->next;
skip--;
}
while (c && tosend)
{
tunnel[t].try = 0; // first send
tunnelsend(c->buf, c->length, t);
c = c->next;
tosend--;
}
}
if (!tunnel[t].controlc)
tunnel[t].retry = 0; // caught up
}
if (l)
{ // if not a null message
int result = 0;
int error = 0;
char *msg = 0;
// process AVPs
while (l && !(fatal & 0x80)) // 0x80 = mandatory AVP
{
uint16_t n = (ntohs(*(uint16_t *) p) & 0x3FF);
uint8_t *b = p;
uint8_t flags = *p;
uint16_t mtype;
if (n > l)
{
LOG(1, s, t, "Invalid length in AVP\n");
STAT(tunnel_rx_errors);
return;
}
p += n; // next
l -= n;
if (flags & 0x3C) // reserved bits, should be clear
{
LOG(1, s, t, "Unrecognised AVP flags %02X\n", *b);
fatal = flags;
result = 2; // general error
error = 3; // reserved field non-zero
msg = 0;
continue; // next
}
b += 2;
if (*(uint16_t *) (b))
{
LOG(2, s, t, "Unknown AVP vendor %d\n", ntohs(*(uint16_t *) (b)));
fatal = flags;
result = 2; // general error
error = 6; // generic vendor-specific error
msg = "unsupported vendor-specific";
continue; // next
}
b += 2;
mtype = ntohs(*(uint16_t *) (b));
b += 2;
n -= 6;
if (flags & 0x40)
{
uint16_t orig_len;
// handle hidden AVPs
if (!*config->l2tpsecret)
{
LOG(1, s, t, "Hidden AVP requested, but no L2TP secret.\n");
fatal = flags;
result = 2; // general error
error = 6; // generic vendor-specific error
msg = "secret not specified";
continue;
}
if (!session[s].random_vector_length)
{
LOG(1, s, t, "Hidden AVP requested, but no random vector.\n");
fatal = flags;
result = 2; // general error
error = 6; // generic
msg = "no random vector";
continue;
}
if (n < 8)
{
LOG(2, s, t, "Short hidden AVP.\n");
fatal = flags;
result = 2; // general error
error = 2; // length is wrong
msg = 0;
continue;
}
// Unhide the AVP
unhide_value(b, n, mtype, session[s].random_vector, session[s].random_vector_length);
orig_len = ntohs(*(uint16_t *) b);
if (orig_len > n + 2)
{
LOG(1, s, t, "Original length %d too long in hidden AVP of length %d; wrong secret?\n",
orig_len, n);
fatal = flags;
result = 2; // general error
error = 2; // length is wrong
msg = 0;
continue;
}
b += 2;
n = orig_len;
}
LOG(4, s, t, " AVP %d (%s) len %d%s%s\n", mtype, l2tp_avp_name(mtype), n,
flags & 0x40 ? ", hidden" : "", flags & 0x80 ? ", mandatory" : "");
switch (mtype)
{
case 0: // message type
message = ntohs(*(uint16_t *) b);
mandatory = flags & 0x80;
LOG(4, s, t, " Message type = %d (%s)\n", *b, l2tp_code(message));
break;
case 1: // result code
{
uint16_t rescode = ntohs(*(uint16_t *) b);
const char* resdesc = "(unknown)";
if (message == 4)
{ /* StopCCN */
resdesc = l2tp_stopccn_result_code(rescode);
}
else if (message == 14)
{ /* CDN */
resdesc = l2tp_cdn_result_code(rescode);
}
LOG(4, s, t, " Result Code %d: %s\n", rescode, resdesc);
if (n >= 4)
{
uint16_t errcode = ntohs(*(uint16_t *)(b + 2));
LOG(4, s, t, " Error Code %d: %s\n", errcode, l2tp_error_code(errcode));
}
if (n > 4)
LOG(4, s, t, " Error String: %.*s\n", n-4, b+4);
break;
}
break;
case 2: // protocol version
{
version = ntohs(*(uint16_t *) (b));
LOG(4, s, t, " Protocol version = %d\n", version);
if (version && version != 0x0100)
{ // allow 0.0 and 1.0
LOG(1, s, t, " Bad protocol version %04X\n", version);
fatal = flags;
result = 5; // unspported protocol version
error = 0x0100; // supported version
msg = 0;
continue; // next
}
}
break;
case 3: // framing capabilities
// LOG(4, s, t, "Framing capabilities\n");
break;
case 4: // bearer capabilities
// LOG(4, s, t, "Bearer capabilities\n");
break;
case 5: // tie breaker
// We never open tunnels, so we don't care about tie breakers
// LOG(4, s, t, "Tie breaker\n");
continue;
case 6: // firmware revision
// LOG(4, s, t, "Firmware revision\n");
break;
case 7: // host name
memset(tunnel[t].hostname, 0, sizeof(tunnel[t].hostname));
memcpy(tunnel[t].hostname, b, (n < sizeof(tunnel[t].hostname)) ? n : sizeof(tunnel[t].hostname) - 1);
LOG(4, s, t, " Tunnel hostname = \"%s\"\n", tunnel[t].hostname);
// TBA - to send to RADIUS
break;
case 8: // vendor name
memset(tunnel[t].vendor, 0, sizeof(tunnel[t].vendor));
memcpy(tunnel[t].vendor, b, (n < sizeof(tunnel[t].vendor)) ? n : sizeof(tunnel[t].vendor) - 1);
LOG(4, s, t, " Vendor name = \"%s\"\n", tunnel[t].vendor);
break;
case 9: // assigned tunnel
tunnel[t].far = ntohs(*(uint16_t *) (b));
LOG(4, s, t, " Remote tunnel id = %d\n", tunnel[t].far);
break;
case 10: // rx window
tunnel[t].window = ntohs(*(uint16_t *) (b));
if (!tunnel[t].window)
tunnel[t].window = 1; // window of 0 is silly
LOG(4, s, t, " rx window = %d\n", tunnel[t].window);
break;
case 11: // Challenge
{
LOG(4, s, t, " LAC requested CHAP authentication for tunnel\n");
build_chap_response(b, 2, n, &chapresponse);
}
break;
case 13: // Response
// Why did they send a response? We never challenge.
LOG(2, s, t, " received unexpected challenge response\n");
break;
case 14: // assigned session
asession = session[s].far = ntohs(*(uint16_t *) (b));
LOG(4, s, t, " assigned session = %d\n", asession);
break;
case 15: // call serial number
LOG(4, s, t, " call serial number = %d\n", ntohl(*(uint32_t *)b));
break;
case 18: // bearer type
LOG(4, s, t, " bearer type = %d\n", ntohl(*(uint32_t *)b));
// TBA - for RADIUS
break;
case 19: // framing type
LOG(4, s, t, " framing type = %d\n", ntohl(*(uint32_t *)b));
// TBA
break;
case 21: // called number
memset(called, 0, sizeof(called));
memcpy(called, b, (n < sizeof(called)) ? n : sizeof(called) - 1);
LOG(4, s, t, " Called <%s>\n", called);
break;
case 22: // calling number
memset(calling, 0, sizeof(calling));
memcpy(calling, b, (n < sizeof(calling)) ? n : sizeof(calling) - 1);
LOG(4, s, t, " Calling <%s>\n", calling);
break;
case 23: // subtype
break;
case 24: // tx connect speed
if (n == 4)
{
session[s].tx_connect_speed = ntohl(*(uint32_t *)b);
}
else
{
// AS5300s send connect speed as a string
char tmp[30];
memset(tmp, 0, sizeof(tmp));
memcpy(tmp, b, (n < sizeof(tmp)) ? n : sizeof(tmp) - 1);
session[s].tx_connect_speed = atol(tmp);
}
LOG(4, s, t, " TX connect speed <%u>\n", session[s].tx_connect_speed);
break;
case 38: // rx connect speed
if (n == 4)
{
session[s].rx_connect_speed = ntohl(*(uint32_t *)b);
}
else
{
// AS5300s send connect speed as a string
char tmp[30];
memset(tmp, 0, sizeof(tmp));
memcpy(tmp, b, (n < sizeof(tmp)) ? n : sizeof(tmp) - 1);
session[s].rx_connect_speed = atol(tmp);
}
LOG(4, s, t, " RX connect speed <%u>\n", session[s].rx_connect_speed);
break;
case 25: // Physical Channel ID
{
uint32_t tmp = ntohl(*(uint32_t *) b);
LOG(4, s, t, " Physical Channel ID <%X>\n", tmp);
break;
}
case 29: // Proxy Authentication Type
{
uint16_t atype = ntohs(*(uint16_t *)b);
LOG(4, s, t, " Proxy Auth Type %d (%s)\n", atype, ppp_auth_type(atype));
if (atype == 2)
authtype = AUTHCHAP;
else if (atype == 3)
authtype = AUTHPAP;
break;
}
case 30: // Proxy Authentication Name
{
char authname[64];
memset(authname, 0, sizeof(authname));
memcpy(authname, b, (n < sizeof(authname)) ? n : sizeof(authname) - 1);
LOG(4, s, t, " Proxy Auth Name (%s)\n",
authname);
break;
}
case 31: // Proxy Authentication Challenge
{
LOG(4, s, t, " Proxy Auth Challenge\n");
break;
}
case 32: // Proxy Authentication ID
{
uint16_t authid = ntohs(*(uint16_t *)(b));
LOG(4, s, t, " Proxy Auth ID (%d)\n", authid);
break;
}
case 33: // Proxy Authentication Response
LOG(4, s, t, " Proxy Auth Response\n");
break;
case 27: // last sent lcp
{ // find magic number
uint8_t *p = b, *e = p + n;
while (p + 1 < e && p[1] && p + p[1] <= e)
{
if (*p == 5 && p[1] == 6) // Magic-Number
amagic = ntohl(*(uint32_t *) (p + 2));
else if (*p == 3 && p[1] == 4 && *(uint16_t *) (p + 2) == htons(PPPPAP)) // Authentication-Protocol (PAP)
authtype = AUTHPAP;
else if (*p == 3 && p[1] == 5 && *(uint16_t *) (p + 2) == htons(PPPCHAP) && p[4] == 5) // Authentication-Protocol (CHAP)
authtype = AUTHCHAP;
else if (*p == 7) // Protocol-Field-Compression
aflags |= SESSIONPFC;
else if (*p == 8) // Address-and-Control-Field-Compression
aflags |= SESSIONACFC;
p += p[1];
}
}
break;
case 28: // last recv lcp confreq
break;
case 26: // Initial Received LCP CONFREQ
break;
case 39: // seq required - we control it as an LNS anyway...
break;
case 36: // Random Vector
LOG(4, s, t, " Random Vector received. Enabled AVP Hiding.\n");
memset(session[s].random_vector, 0, sizeof(session[s].random_vector));
if (n > sizeof(session[s].random_vector))
n = sizeof(session[s].random_vector);
memcpy(session[s].random_vector, b, n);
session[s].random_vector_length = n;
break;
default:
{
static char e[] = "unknown AVP 0xXXXX";
LOG(2, s, t, " Unknown AVP type %d\n", mtype);
fatal = flags;
result = 2; // general error
error = 8; // unknown mandatory AVP
sprintf((msg = e) + 14, "%04x", mtype);
continue; // next
}
}
}
// process message
if (fatal & 0x80)
tunnelshutdown(t, "Invalid mandatory AVP", result, error, msg);
else
switch (message)
{
case 1: // SCCRQ - Start Control Connection Request
tunnel[t].state = TUNNELOPENING;
if (main_quit != QUIT_SHUTDOWN)
{
controlt *c = controlnew(2); // sending SCCRP
control16(c, 2, version, 1); // protocol version
control32(c, 3, 3, 1); // framing
controls(c, 7, tunnel[t].hostname, 1); // host name (TBA)
if (chapresponse) controlb(c, 13, chapresponse, 16, 1); // Challenge response
control16(c, 9, t, 1); // assigned tunnel
controladd(c, t, 0); // send the resply
}
else
{
tunnelshutdown(t, "Shutting down", 6, 0, 0);
}
break;
case 2: // SCCRP
tunnel[t].state = TUNNELOPEN;
break;
case 3: // SCCN
tunnel[t].state = TUNNELOPEN;
controlnull(t); // ack
break;
case 4: // StopCCN
controlnull(t); // ack
tunnelshutdown(t, "Stopped", 0, 0, 0); // Shut down cleanly
break;
case 6: // HELLO
controlnull(t); // simply ACK
break;
case 7: // OCRQ
// TBA
break;
case 8: // OCRO
// TBA
break;
case 9: // OCCN
// TBA
break;
case 10: // ICRQ
if (sessionfree && main_quit != QUIT_SHUTDOWN)
{
controlt *c = controlnew(11); // ICRP
s = sessionfree;
sessionfree = session[s].next;
memset(&session[s], 0, sizeof(session[s]));
if (s > config->cluster_highest_sessionid)
config->cluster_highest_sessionid = s;
session[s].opened = time_now;
session[s].tunnel = t;
session[s].far = asession;
session[s].last_packet = time_now;
LOG(3, s, t, "New session (%d/%d)\n", tunnel[t].far, session[s].far);
control16(c, 14, s, 1); // assigned session
controladd(c, t, asession); // send the reply
strncpy(session[s].called, called, sizeof(session[s].called) - 1);
strncpy(session[s].calling, calling, sizeof(session[s].calling) - 1);
session[s].ppp.phase = Establish;
session[s].ppp.lcp = Starting;
STAT(session_created);
break;
}
{
controlt *c = controlnew(14); // CDN
if (!sessionfree)
{
STAT(session_overflow);
LOG(1, 0, t, "No free sessions\n");
control16(c, 1, 4, 0); // temporary lack of resources
}
else
control16(c, 1, 2, 7); // shutting down, try another
controladd(c, t, asession); // send the message
}
return;
case 11: // ICRP
// TBA
break;
case 12: // ICCN
if (amagic == 0) amagic = time_now;
session[s].magic = amagic; // set magic number
session[s].l2tp_flags = aflags; // set flags received
LOG(3, s, t, "Magic %X Flags %X\n", amagic, aflags);
controlnull(t); // ack
// proxy authentication type is not supported
if (!(config->radius_authtypes & authtype))
authtype = config->radius_authprefer;
// start LCP
sendlcp(t, s, authtype);
sess_local[s].lcp.restart = time_now + config->ppp_restart_time;
sess_local[s].lcp.conf_sent = 1;
sess_local[s].lcp.nak_sent = 0;
sess_local[s].lcp_authtype = authtype;
session[s].ppp.lcp = RequestSent;
break;
case 14: // CDN
controlnull(t); // ack
sessionshutdown(s, "Closed (Received CDN).", 0, 0);
break;
case 0xFFFF:
LOG(1, s, t, "Missing message type\n");
break;
default:
STAT(tunnel_rx_errors);
if (mandatory)
tunnelshutdown(t, "Unknown message type", 2, 6, "unknown message type");
else
LOG(1, s, t, "Unknown message type %d\n", message);
break;
}
if (chapresponse) free(chapresponse);
cluster_send_tunnel(t);
}
else
{
LOG(4, s, t, " Got a ZLB ack\n");
}
}
else
{ // data
uint16_t prot;
LOG_HEX(5, "Receive Tunnel Data", p, l);
if (l > 2 && p[0] == 0xFF && p[1] == 0x03)
{ // HDLC address header, discard
p += 2;
l -= 2;
}
if (l < 2)
{
LOG(1, s, t, "Short ppp length %d\n", l);
STAT(tunnel_rx_errors);
return;
}
if (*p & 1)
{
prot = *p++;
l--;
}
else
{
prot = ntohs(*(uint16_t *) p);
p += 2;
l -= 2;
}
if (s && !session[s].opened) // Is something wrong??
{
if (!config->cluster_iam_master)
{
// Pass it off to the master to deal with..
master_forward_packet(buf, len, addr->sin_addr.s_addr, addr->sin_port);
return;
}
LOG(1, s, t, "UDP packet contains session which is not opened. Dropping packet.\n");
STAT(tunnel_rx_errors);
return;
}
if (prot == PPPPAP)
{
session[s].last_packet = time_now;
if (!config->cluster_iam_master) { master_forward_packet(buf, len, addr->sin_addr.s_addr, addr->sin_port); return; }
processpap(t, s, p, l);
}
else if (prot == PPPCHAP)
{
session[s].last_packet = time_now;
if (!config->cluster_iam_master) { master_forward_packet(buf, len, addr->sin_addr.s_addr, addr->sin_port); return; }
processchap(t, s, p, l);
}
else if (prot == PPPLCP)
{
session[s].last_packet = time_now;
if (!config->cluster_iam_master) { master_forward_packet(buf, len, addr->sin_addr.s_addr, addr->sin_port); return; }
processlcp(t, s, p, l);
}
else if (prot == PPPIPCP)
{
session[s].last_packet = time_now;
if (!config->cluster_iam_master) { master_forward_packet(buf, len, addr->sin_addr.s_addr, addr->sin_port); return; }
processipcp(t, s, p, l);
}
else if (prot == PPPIPV6CP)
{
session[s].last_packet = time_now;
if (!config->cluster_iam_master) { master_forward_packet(buf, len, addr->sin_addr.s_addr, addr->sin_port); return; }
processipv6cp(t, s, p, l);
}
else if (prot == PPPCCP)
{
session[s].last_packet = time_now;
if (!config->cluster_iam_master) { master_forward_packet(buf, len, addr->sin_addr.s_addr, addr->sin_port); return; }
processccp(t, s, p, l);
}
else if (prot == PPPIP)
{
if (session[s].die)
{
LOG(4, s, t, "Session %d is closing. Don't process PPP packets\n", s);
return; // closing session, PPP not processed
}
session[s].last_packet = time_now;
if (session[s].walled_garden && !config->cluster_iam_master)
{
master_forward_packet(buf, len, addr->sin_addr.s_addr, addr->sin_port);
return;
}
processipin(t, s, p, l);
}
else if (prot == PPPIPV6)
{
if (!config->ipv6_prefix.s6_addr[0])
{
LOG(1, s, t, "IPv6 not configured; yet received IPv6 packet. Ignoring.\n");
return;
}
if (session[s].die)
{
LOG(4, s, t, "Session %d is closing. Don't process PPP packets\n", s);
return; // closing session, PPP not processed
}
session[s].last_packet = time_now;
if (session[s].walled_garden && !config->cluster_iam_master)
{
master_forward_packet(buf, len, addr->sin_addr.s_addr, addr->sin_port);
return;
}
processipv6in(t, s, p, l);
}
else
{
STAT(tunnel_rx_errors);
LOG(1, s, t, "Unknown PPP protocol %04X\n", prot);
}
}
}
// read and process packet on tun
static void processtun(uint8_t * buf, int len)
{
LOG_HEX(5, "Receive TUN Data", buf, len);
STAT(tun_rx_packets);
INC_STAT(tun_rx_bytes, len);
CSTAT(processtun);
eth_rx_pkt++;
eth_rx += len;
if (len < 22)
{
LOG(1, 0, 0, "Short tun packet %d bytes\n", len);
STAT(tun_rx_errors);
return;
}
if (*(uint16_t *) (buf + 2) == htons(PKTIP)) // IPv4
processipout(buf, len);
else if (*(uint16_t *) (buf + 2) == htons(PKTIPV6) // IPV6
&& config->ipv6_prefix.s6_addr[0])
processipv6out(buf, len);
// Else discard.
}
// Handle retries, timeouts. Runs every 1/10th sec, want to ensure
// that we look at the whole of the tunnel, radius and session tables
// every second
static void regular_cleanups(double period)
{
// Next tunnel, radius and session to check for actions on.
static tunnelidt t = 0;
static int r = 0;
static sessionidt s = 0;
int t_actions = 0;
int r_actions = 0;
int s_actions = 0;
int t_slice;
int r_slice;
int s_slice;
int i;
int a;
// divide up tables into slices based on the last run
t_slice = config->cluster_highest_tunnelid * period;
r_slice = (MAXRADIUS - 1) * period;
s_slice = config->cluster_highest_sessionid * period;
if (t_slice < 1)
t_slice = 1;
else if (t_slice > config->cluster_highest_tunnelid)
t_slice = config->cluster_highest_tunnelid;
if (r_slice < 1)
r_slice = 1;
else if (r_slice > (MAXRADIUS - 1))
r_slice = MAXRADIUS - 1;
if (s_slice < 1)
s_slice = 1;
else if (s_slice > config->cluster_highest_sessionid)
s_slice = config->cluster_highest_sessionid;
LOG(4, 0, 0, "Begin regular cleanup (last %f seconds ago)\n", period);
for (i = 0; i < t_slice; i++)
{
t++;
if (t > config->cluster_highest_tunnelid)
t = 1;
// check for expired tunnels
if (tunnel[t].die && tunnel[t].die <= TIME)
{
STAT(tunnel_timeout);
tunnelkill(t, "Expired");
t_actions++;
continue;
}
// check for message resend
if (tunnel[t].retry && tunnel[t].controlc)
{
// resend pending messages as timeout on reply
if (tunnel[t].retry <= TIME)
{
controlt *c = tunnel[t].controls;
uint8_t w = tunnel[t].window;
tunnel[t].try++; // another try
if (tunnel[t].try > 5)
tunnelkill(t, "Timeout on control message"); // game over
else
while (c && w--)
{
tunnelsend(c->buf, c->length, t);
c = c->next;
}
t_actions++;
}
}
// Send hello
if (tunnel[t].state == TUNNELOPEN && tunnel[t].lastrec < TIME + 600)
{
controlt *c = controlnew(6); // sending HELLO
controladd(c, t, 0); // send the message
LOG(3, 0, t, "Sending HELLO message\n");
t_actions++;
}
// Check for tunnel changes requested from the CLI
if ((a = cli_tunnel_actions[t].action))
{
cli_tunnel_actions[t].action = 0;
if (a & CLI_TUN_KILL)
{
LOG(2, 0, t, "Dropping tunnel by CLI\n");
tunnelshutdown(t, "Requested by administrator", 1, 0, 0);
t_actions++;
}
}
}
for (i = 0; i < r_slice; i++)
{
r++;
if (r >= MAXRADIUS)
r = 1;
if (!radius[r].state)
continue;
if (radius[r].retry <= TIME)
{
radiusretry(r);
r_actions++;
}
}
for (i = 0; i < s_slice; i++)
{
s++;
if (s > config->cluster_highest_sessionid)
s = 1;
if (!session[s].opened) // Session isn't in use
continue;
// check for expired sessions
if (session[s].die)
{
if (session[s].die <= TIME)
{
sessionkill(s, "Expired");
s_actions++;
}
continue;
}
// PPP timeouts
if (sess_local[s].lcp.restart >= time_now)
{
int next_state = session[s].ppp.lcp;
switch (session[s].ppp.lcp)
{
case RequestSent:
case AckReceived:
next_state = RequestSent;
case AckSent:
if (sess_local[s].lcp.conf_sent < config->ppp_max_configure)
{
LOG(3, s, session[s].tunnel, "No ACK for LCP ConfigReq... resending\n");
sess_local[s].lcp.restart = time_now + config->ppp_restart_time;
sess_local[s].lcp.conf_sent++;
sendlcp(t, s, sess_local[s].lcp_authtype);
change_state(s, lcp, next_state);
}
else
{
sessionshutdown(s, "No response to LCP ConfigReq.", 3, 0);
STAT(session_timeout);
}
s_actions++;
}
if (session[s].die)
continue;
}
if (sess_local[s].ipcp.restart >= time_now)
{
int next_state = session[s].ppp.ipcp;
switch (session[s].ppp.ipcp)
{
case RequestSent:
case AckReceived:
next_state = RequestSent;
case AckSent:
if (sess_local[s].ipcp.conf_sent < config->ppp_max_configure)
{
LOG(3, s, session[s].tunnel, "No ACK for IPCP ConfigReq... resending\n");
sess_local[s].ipcp.restart = time_now + config->ppp_restart_time;
sess_local[s].ipcp.conf_sent++;
sendipcp(t, s);
change_state(s, ipcp, next_state);
}
else
{
sessionshutdown(s, "No response to IPCP ConfigReq.", 3, 0);
STAT(session_timeout);
}
s_actions++;
}
if (session[s].die)
continue;
}
if (sess_local[s].ipv6cp.restart >= time_now)
{
int next_state = session[s].ppp.ipv6cp;
switch (session[s].ppp.ipv6cp)
{
case RequestSent:
case AckReceived:
next_state = RequestSent;
case AckSent:
if (sess_local[s].ipv6cp.conf_sent < config->ppp_max_configure)
{
LOG(3, s, session[s].tunnel, "No ACK for IPV6CP ConfigReq... resending\n");
sess_local[s].ipv6cp.restart = time_now + config->ppp_restart_time;
sess_local[s].ipv6cp.conf_sent++;
sendipv6cp(t, s);
change_state(s, ipv6cp, next_state);
}
else
{
LOG(3, s, session[s].tunnel, "No ACK for IPV6CP ConfigReq\n");
change_state(s, ipv6cp, Stopped);
}
s_actions++;
}
}
if (sess_local[s].ccp.restart >= time_now)
{
int next_state = session[s].ppp.ccp;
switch (session[s].ppp.ccp)
{
case RequestSent:
case AckReceived:
next_state = RequestSent;
case AckSent:
if (sess_local[s].ccp.conf_sent < config->ppp_max_configure)
{
LOG(3, s, session[s].tunnel, "No ACK for CCP ConfigReq... resending\n");
sess_local[s].ccp.restart = time_now + config->ppp_restart_time;
sess_local[s].ccp.conf_sent++;
sendccp(t, s);
change_state(s, ccp, next_state);
}
else
{
LOG(3, s, session[s].tunnel, "No ACK for CCP ConfigReq\n");
change_state(s, ccp, Stopped);
}
s_actions++;
}
}
// Drop sessions who have not responded within IDLE_TIMEOUT seconds
if (session[s].last_packet && (time_now - session[s].last_packet >= IDLE_TIMEOUT))
{
sessionshutdown(s, "No response to LCP ECHO requests.", 3, 0);
STAT(session_timeout);
s_actions++;
continue;
}
// No data in ECHO_TIMEOUT seconds, send LCP ECHO
if (session[s].ppp.phase >= Establish && (time_now - session[s].last_packet >= ECHO_TIMEOUT))
{
uint8_t b[MAXCONTROL] = {0};
uint8_t *q = makeppp(b, sizeof(b), 0, 0, session[s].tunnel, s, PPPLCP);
if (!q) continue;
*q = EchoReq;
*(uint8_t *)(q + 1) = (time_now % 255); // ID
*(uint16_t *)(q + 2) = htons(8); // Length
*(uint32_t *)(q + 4) = 0; // Magic Number (not supported)
LOG(4, s, session[s].tunnel, "No data in %d seconds, sending LCP ECHO\n",
(int)(time_now - session[s].last_packet));
tunnelsend(b, 24, session[s].tunnel); // send it
s_actions++;
}
// Check for actions requested from the CLI
if ((a = cli_session_actions[s].action))
{
int send = 0;
cli_session_actions[s].action = 0;
if (a & CLI_SESS_KILL)
{
LOG(2, s, session[s].tunnel, "Dropping session by CLI\n");
sessionshutdown(s, "Requested by administrator.", 3, 0);
a = 0; // dead, no need to check for other actions
s_actions++;
}
if (a & CLI_SESS_NOSNOOP)
{
LOG(2, s, session[s].tunnel, "Unsnooping session by CLI\n");
session[s].snoop_ip = 0;
session[s].snoop_port = 0;
s_actions++;
send++;
}
else if (a & CLI_SESS_SNOOP)
{
LOG(2, s, session[s].tunnel, "Snooping session by CLI (to %s:%d)\n",
fmtaddr(cli_session_actions[s].snoop_ip, 0),
cli_session_actions[s].snoop_port);
session[s].snoop_ip = cli_session_actions[s].snoop_ip;
session[s].snoop_port = cli_session_actions[s].snoop_port;
s_actions++;
send++;
}
if (a & CLI_SESS_NOTHROTTLE)
{
LOG(2, s, session[s].tunnel, "Un-throttling session by CLI\n");
throttle_session(s, 0, 0);
s_actions++;
send++;
}
else if (a & CLI_SESS_THROTTLE)
{
LOG(2, s, session[s].tunnel, "Throttling session by CLI (to %dkb/s up and %dkb/s down)\n",
cli_session_actions[s].throttle_in,
cli_session_actions[s].throttle_out);
throttle_session(s, cli_session_actions[s].throttle_in, cli_session_actions[s].throttle_out);
s_actions++;
send++;
}
if (a & CLI_SESS_NOFILTER)
{
LOG(2, s, session[s].tunnel, "Un-filtering session by CLI\n");
filter_session(s, 0, 0);
s_actions++;
send++;
}
else if (a & CLI_SESS_FILTER)
{
LOG(2, s, session[s].tunnel, "Filtering session by CLI (in=%d, out=%d)\n",
cli_session_actions[s].filter_in,
cli_session_actions[s].filter_out);
filter_session(s, cli_session_actions[s].filter_in, cli_session_actions[s].filter_out);
s_actions++;
send++;
}
if (send)
cluster_send_session(s);
}
// RADIUS interim accounting
if (config->radius_accounting && config->radius_interim > 0
&& session[s].ip && !session[s].walled_garden
&& !sess_local[s].radius // RADIUS already in progress
&& time_now - sess_local[s].last_interim >= config->radius_interim)
{
int rad = radiusnew(s);
if (!rad)
{
LOG(1, s, session[s].tunnel, "No free RADIUS sessions for Interim message\n");
STAT(radius_overflow);
continue;
}
LOG(3, s, session[s].tunnel, "Sending RADIUS Interim for %s (%u)\n",
session[s].user, session[s].unique_id);
radiussend(rad, RADIUSINTERIM);
sess_local[s].last_interim = time_now;
s_actions++;
}
}
LOG(4, 0, 0, "End regular cleanup: checked %d/%d/%d tunnels/radius/sessions; %d/%d/%d actions\n",
t_slice, r_slice, s_slice, t_actions, r_actions, s_actions);
}
//
// Are we in the middle of a tunnel update, or radius
// requests??
//
static int still_busy(void)
{
int i;
static clockt last_talked = 0;
static clockt start_busy_wait = 0;
if (!config->cluster_iam_master)
{
#ifdef BGP
static time_t stopped_bgp = 0;
if (bgp_configured)
{
if (!stopped_bgp)
{
LOG(1, 0, 0, "Shutting down in %d seconds, stopping BGP...\n", QUIT_DELAY);
for (i = 0; i < BGP_NUM_PEERS; i++)
if (bgp_peers[i].state == Established)
bgp_stop(&bgp_peers[i]);
stopped_bgp = time_now;
// we don't want to become master
cluster_send_ping(0);
return 1;
}
if (time_now < (stopped_bgp + QUIT_DELAY))
return 1;
}
#endif /* BGP */
return 0;
}
if (main_quit == QUIT_SHUTDOWN)
{
static int dropped = 0;
if (!dropped)
{
int i;
LOG(1, 0, 0, "Dropping sessions and tunnels\n");
for (i = 1; i < MAXTUNNEL; i++)
if (tunnel[i].ip || tunnel[i].state)
tunnelshutdown(i, "L2TPNS Closing", 6, 0, 0);
dropped = 1;
}
}
if (start_busy_wait == 0)
start_busy_wait = TIME;
for (i = config->cluster_highest_tunnelid ; i > 0 ; --i)
{
if (!tunnel[i].controlc)
continue;
if (last_talked != TIME)
{
LOG(2, 0, 0, "Tunnel %d still has un-acked control messages.\n", i);
last_talked = TIME;
}
return 1;
}
// We stop waiting for radius after BUSY_WAIT_TIME 1/10th seconds
if (abs(TIME - start_busy_wait) > BUSY_WAIT_TIME)
{
LOG(1, 0, 0, "Giving up waiting for RADIUS to be empty. Shutting down anyway.\n");
return 0;
}
for (i = 1; i < MAXRADIUS; i++)
{
if (radius[i].state == RADIUSNULL)
continue;
if (radius[i].state == RADIUSWAIT)
continue;
if (last_talked != TIME)
{
LOG(2, 0, 0, "Radius session %d is still busy (sid %d)\n", i, radius[i].session);
last_talked = TIME;
}
return 1;
}
return 0;
}
#ifdef HAVE_EPOLL
# include <sys/epoll.h>
#else
# define FAKE_EPOLL_IMPLEMENTATION /* include the functions */
# include "fake_epoll.h"
#endif
// the base set of fds polled: cli, cluster, tun, udp, control, dae
#define BASE_FDS 6
// additional polled fds
#ifdef BGP
# define EXTRA_FDS BGP_NUM_PEERS
#else
# define EXTRA_FDS 0
#endif
// main loop - gets packets on tun or udp and processes them
static void mainloop(void)
{
int i;
uint8_t buf[65536];
clockt next_cluster_ping = 0; // send initial ping immediately
struct epoll_event events[BASE_FDS + RADIUS_FDS + EXTRA_FDS];
int maxevent = sizeof(events)/sizeof(*events);
if ((epollfd = epoll_create(maxevent)) < 0)
{
LOG(0, 0, 0, "epoll_create failed: %s\n", strerror(errno));
exit(1);
}
LOG(4, 0, 0, "Beginning of main loop. clifd=%d, cluster_sockfd=%d, tunfd=%d, udpfd=%d, controlfd=%d, daefd=%d\n",
clifd, cluster_sockfd, tunfd, udpfd, controlfd, daefd);
/* setup our fds to poll for input */
{
static struct event_data d[BASE_FDS];
struct epoll_event e;
e.events = EPOLLIN;
i = 0;
d[i].type = FD_TYPE_CLI;
e.data.ptr = &d[i++];
epoll_ctl(epollfd, EPOLL_CTL_ADD, clifd, &e);
d[i].type = FD_TYPE_CLUSTER;
e.data.ptr = &d[i++];
epoll_ctl(epollfd, EPOLL_CTL_ADD, cluster_sockfd, &e);
d[i].type = FD_TYPE_TUN;
e.data.ptr = &d[i++];
epoll_ctl(epollfd, EPOLL_CTL_ADD, tunfd, &e);
d[i].type = FD_TYPE_UDP;
e.data.ptr = &d[i++];
epoll_ctl(epollfd, EPOLL_CTL_ADD, udpfd, &e);
d[i].type = FD_TYPE_CONTROL;
e.data.ptr = &d[i++];
epoll_ctl(epollfd, EPOLL_CTL_ADD, controlfd, &e);
d[i].type = FD_TYPE_DAE;
e.data.ptr = &d[i++];
epoll_ctl(epollfd, EPOLL_CTL_ADD, daefd, &e);
}
#ifdef BGP
signal(SIGPIPE, SIG_IGN);
bgp_setup(config->as_number);
if (config->bind_address)
bgp_add_route(config->bind_address, 0xffffffff);
for (i = 0; i < BGP_NUM_PEERS; i++)
{
if (config->neighbour[i].name[0])
bgp_start(&bgp_peers[i], config->neighbour[i].name,
config->neighbour[i].as, config->neighbour[i].keepalive,
config->neighbour[i].hold, 0); /* 0 = routing disabled */
}
#endif /* BGP */
while (!main_quit || still_busy())
{
int more = 0;
int n;
if (config->reload_config)
{
// Update the config state based on config settings
update_config();
}
#ifdef BGP
bgp_set_poll();
#endif /* BGP */
n = epoll_wait(epollfd, events, maxevent, 100); // timeout 100ms (1/10th sec)
STAT(select_called);
TIME = now(NULL);
if (n < 0)
{
if (errno == EINTR ||
errno == ECHILD) // EINTR was clobbered by sigchild_handler()
continue;
LOG(0, 0, 0, "Error returned from select(): %s\n", strerror(errno));
break; // exit
}
if (n)
{
struct sockaddr_in addr;
socklen_t alen;
int c, s;
int udp_ready = 0;
int tun_ready = 0;
int cluster_ready = 0;
int udp_pkts = 0;
int tun_pkts = 0;
int cluster_pkts = 0;
#ifdef BGP
uint32_t bgp_events[BGP_NUM_PEERS];
memset(bgp_events, 0, sizeof(bgp_events));
#endif /* BGP */
for (c = n, i = 0; i < c; i++)
{
struct event_data *d = events[i].data.ptr;
switch (d->type)
{
case FD_TYPE_CLI: // CLI connections
{
int cli;
alen = sizeof(addr);
if ((cli = accept(clifd, (struct sockaddr *)&addr, &alen)) >= 0)
{
cli_do(cli);
close(cli);
}
else
LOG(0, 0, 0, "accept error: %s\n", strerror(errno));
n--;
break;
}
// these are handled below, with multiple interleaved reads
case FD_TYPE_CLUSTER: cluster_ready++; break;
case FD_TYPE_TUN: tun_ready++; break;
case FD_TYPE_UDP: udp_ready++; break;
case FD_TYPE_CONTROL: // nsctl commands
alen = sizeof(addr);
processcontrol(buf, recvfrom(controlfd, buf, sizeof(buf), MSG_WAITALL, (void *) &addr, &alen), &addr, alen);
n--;
break;
case FD_TYPE_DAE: // DAE requests
alen = sizeof(addr);
processdae(buf, recvfrom(daefd, buf, sizeof(buf), MSG_WAITALL, (void *) &addr, &alen), &addr, alen);
n--;
break;
case FD_TYPE_RADIUS: // RADIUS response
s = recv(radfds[d->index], buf, sizeof(buf), 0);
if (s >= 0 && config->cluster_iam_master)
processrad(buf, s, d->index);
n--;
break;
#ifdef BGP
case FD_TYPE_BGP:
bgp_events[d->index] = events[i].events;
n--;
break;
#endif /* BGP */
default:
LOG(0, 0, 0, "Unexpected fd type returned from epoll_wait: %d\n", d->type);
}
}
#ifdef BGP
bgp_process(bgp_events);
#endif /* BGP */
for (c = 0; n && c < config->multi_read_count; c++)
{
// L2TP
if (udp_ready)
{
alen = sizeof(addr);
if ((s = recvfrom(udpfd, buf, sizeof(buf), 0, (void *) &addr, &alen)) > 0)
{
processudp(buf, s, &addr);
udp_pkts++;
}
else
{
udp_ready = 0;
n--;
}
}
// incoming IP
if (tun_ready)
{
if ((s = read(tunfd, buf, sizeof(buf))) > 0)
{
processtun(buf, s);
tun_pkts++;
}
else
{
tun_ready = 0;
n--;
}
}
// cluster
if (cluster_ready)
{
alen = sizeof(addr);
if ((s = recvfrom(cluster_sockfd, buf, sizeof(buf), MSG_WAITALL, (void *) &addr, &alen)) > 0)
{
processcluster(buf, s, addr.sin_addr.s_addr);
cluster_pkts++;
}
else
{
cluster_ready = 0;
n--;
}
}
}
if (udp_pkts > 1 || tun_pkts > 1 || cluster_pkts > 1)
STAT(multi_read_used);
if (c >= config->multi_read_count)
{
LOG(3, 0, 0, "Reached multi_read_count (%d); processed %d udp, %d tun and %d cluster packets\n",
config->multi_read_count, udp_pkts, tun_pkts, cluster_pkts);
STAT(multi_read_exceeded);
more++;
}
}
// Runs on every machine (master and slaves).
if (next_cluster_ping <= TIME)
{
// Check to see which of the cluster is still alive..
cluster_send_ping(basetime); // Only does anything if we're a slave
cluster_check_master(); // ditto.
cluster_heartbeat(); // Only does anything if we're a master.
cluster_check_slaves(); // ditto.
master_update_counts(); // If we're a slave, send our byte counters to our master.
if (config->cluster_iam_master && !config->cluster_iam_uptodate)
next_cluster_ping = TIME + 1; // out-of-date slaves, do fast updates
else
next_cluster_ping = TIME + config->cluster_hb_interval;
}
if (!config->cluster_iam_master)
continue;
// Run token bucket filtering queue..
// Only run it every 1/10th of a second.
{
static clockt last_run = 0;
if (last_run != TIME)
{
last_run = TIME;
tbf_run_timer();
}
}
// Handle timeouts, retries etc.
{
static double last_clean = 0;
double this_clean;
double diff;
TIME = now(&this_clean);
diff = this_clean - last_clean;
// Run during idle time (after we've handled
// all incoming packets) or every 1/10th sec
if (!more || diff > 0.1)
{
regular_cleanups(diff);
last_clean = this_clean;
}
}
if (*config->accounting_dir)
{
static clockt next_acct = 0;
static clockt next_shut_acct = 0;
if (next_acct <= TIME)
{
// Dump accounting data
next_acct = TIME + ACCT_TIME;
next_shut_acct = TIME + ACCT_SHUT_TIME;
dump_acct_info(1);
}
else if (next_shut_acct <= TIME)
{
// Dump accounting data for shutdown sessions
next_shut_acct = TIME + ACCT_SHUT_TIME;
if (shut_acct_n)
dump_acct_info(0);
}
}
}
// Are we the master and shutting down??
if (config->cluster_iam_master)
cluster_heartbeat(); // Flush any queued changes..
// Ok. Notify everyone we're shutting down. If we're
// the master, this will force an election.
cluster_send_ping(0);
//
// Important!!! We MUST not process any packets past this point!
LOG(1, 0, 0, "Shutdown complete\n");
}
static void stripdomain(char *host)
{
char *p;
if ((p = strchr(host, '.')))
{
char *domain = 0;
char _domain[1024];
// strip off domain
FILE *resolv = fopen("/etc/resolv.conf", "r");
if (resolv)
{
char buf[1024];
char *b;
while (fgets(buf, sizeof(buf), resolv))
{
if (strncmp(buf, "domain", 6) && strncmp(buf, "search", 6))
continue;
if (!isspace(buf[6]))
continue;
b = buf + 7;
while (isspace(*b)) b++;
if (*b)
{
char *d = b;
while (*b && !isspace(*b)) b++;
*b = 0;
if (buf[0] == 'd') // domain is canonical
{
domain = d;
break;
}
// first search line
if (!domain)
{
// hold, may be subsequent domain line
strncpy(_domain, d, sizeof(_domain))[sizeof(_domain)-1] = 0;
domain = _domain;
}
}
}
fclose(resolv);
}
if (domain)
{
int hl = strlen(host);
int dl = strlen(domain);
if (dl < hl && host[hl - dl - 1] == '.' && !strcmp(host + hl - dl, domain))
host[hl -dl - 1] = 0;
}
else
{
*p = 0; // everything after first dot
}
}
}
// Init data structures
static void initdata(int optdebug, char *optconfig)
{
int i;
if (!(config = shared_malloc(sizeof(configt))))
{
fprintf(stderr, "Error doing malloc for configuration: %s\n", strerror(errno));
exit(1);
}
memset(config, 0, sizeof(configt));
time(&config->start_time);
strncpy(config->config_file, optconfig, strlen(optconfig));
config->debug = optdebug;
config->num_tbfs = MAXTBFS;
config->rl_rate = 28; // 28kbps
config->cluster_master_min_adv = 1;
config->ppp_restart_time = 3;
config->ppp_max_configure = 10;
config->ppp_max_failure = 5;
strcpy(config->random_device, RANDOMDEVICE);
log_stream = stderr;
#ifdef RINGBUFFER
if (!(ringbuffer = shared_malloc(sizeof(struct Tringbuffer))))
{
LOG(0, 0, 0, "Error doing malloc for ringbuffer: %s\n", strerror(errno));
exit(1);
}
memset(ringbuffer, 0, sizeof(struct Tringbuffer));
#endif
if (!(_statistics = shared_malloc(sizeof(struct Tstats))))
{
LOG(0, 0, 0, "Error doing malloc for _statistics: %s\n", strerror(errno));
exit(1);
}
if (!(tunnel = shared_malloc(sizeof(tunnelt) * MAXTUNNEL)))
{
LOG(0, 0, 0, "Error doing malloc for tunnels: %s\n", strerror(errno));
exit(1);
}
if (!(session = shared_malloc(sizeof(sessiont) * MAXSESSION)))
{
LOG(0, 0, 0, "Error doing malloc for sessions: %s\n", strerror(errno));
exit(1);
}
if (!(sess_local = shared_malloc(sizeof(sessionlocalt) * MAXSESSION)))
{
LOG(0, 0, 0, "Error doing malloc for sess_local: %s\n", strerror(errno));
exit(1);
}
if (!(radius = shared_malloc(sizeof(radiust) * MAXRADIUS)))
{
LOG(0, 0, 0, "Error doing malloc for radius: %s\n", strerror(errno));
exit(1);
}
if (!(ip_address_pool = shared_malloc(sizeof(ippoolt) * MAXIPPOOL)))
{
LOG(0, 0, 0, "Error doing malloc for ip_address_pool: %s\n", strerror(errno));
exit(1);
}
if (!(ip_filters = shared_malloc(sizeof(ip_filtert) * MAXFILTER)))
{
LOG(0, 0, 0, "Error doing malloc for ip_filters: %s\n", strerror(errno));
exit(1);
}
memset(ip_filters, 0, sizeof(ip_filtert) * MAXFILTER);
if (!(cli_session_actions = shared_malloc(sizeof(struct cli_session_actions) * MAXSESSION)))
{
LOG(0, 0, 0, "Error doing malloc for cli session actions: %s\n", strerror(errno));
exit(1);
}
memset(cli_session_actions, 0, sizeof(struct cli_session_actions) * MAXSESSION);
if (!(cli_tunnel_actions = shared_malloc(sizeof(struct cli_tunnel_actions) * MAXSESSION)))
{
LOG(0, 0, 0, "Error doing malloc for cli tunnel actions: %s\n", strerror(errno));
exit(1);
}
memset(cli_tunnel_actions, 0, sizeof(struct cli_tunnel_actions) * MAXSESSION);
memset(tunnel, 0, sizeof(tunnelt) * MAXTUNNEL);
memset(session, 0, sizeof(sessiont) * MAXSESSION);
memset(radius, 0, sizeof(radiust) * MAXRADIUS);
memset(ip_address_pool, 0, sizeof(ippoolt) * MAXIPPOOL);
// Put all the sessions on the free list marked as undefined.
for (i = 1; i < MAXSESSION; i++)
{
session[i].next = i + 1;
session[i].tunnel = T_UNDEF; // mark it as not filled in.
}
session[MAXSESSION - 1].next = 0;
sessionfree = 1;
// Mark all the tunnels as undefined (waiting to be filled in by a download).
for (i = 1; i < MAXTUNNEL; i++)
tunnel[i].state = TUNNELUNDEF; // mark it as not filled in.
if (!*hostname)
{
// Grab my hostname unless it's been specified
gethostname(hostname, sizeof(hostname));
stripdomain(hostname);
}
_statistics->start_time = _statistics->last_reset = time(NULL);
#ifdef BGP
if (!(bgp_peers = shared_malloc(sizeof(struct bgp_peer) * BGP_NUM_PEERS)))
{
LOG(0, 0, 0, "Error doing malloc for bgp: %s\n", strerror(errno));
exit(1);
}
#endif /* BGP */
}
static int assign_ip_address(sessionidt s)
{
uint32_t i;
int best = -1;
time_t best_time = time_now;
char *u = session[s].user;
char reuse = 0;
CSTAT(assign_ip_address);
for (i = 1; i < ip_pool_size; i++)
{
if (!ip_address_pool[i].address || ip_address_pool[i].assigned)
continue;
if (!session[s].walled_garden && ip_address_pool[i].user[0] && !strcmp(u, ip_address_pool[i].user))
{
best = i;
reuse = 1;
break;
}
if (ip_address_pool[i].last < best_time)
{
best = i;
if (!(best_time = ip_address_pool[i].last))
break; // never used, grab this one
}
}
if (best < 0)
{
LOG(0, s, session[s].tunnel, "assign_ip_address(): out of addresses\n");
return 0;
}
session[s].ip = ip_address_pool[best].address;
session[s].ip_pool_index = best;
ip_address_pool[best].assigned = 1;
ip_address_pool[best].last = time_now;
ip_address_pool[best].session = s;
if (session[s].walled_garden)
/* Don't track addresses of users in walled garden (note: this
means that their address isn't "sticky" even if they get
un-gardened). */
ip_address_pool[best].user[0] = 0;
else
strncpy(ip_address_pool[best].user, u, sizeof(ip_address_pool[best].user) - 1);
STAT(ip_allocated);
LOG(4, s, session[s].tunnel, "assign_ip_address(): %s ip address %d from pool\n",
reuse ? "Reusing" : "Allocating", best);
return 1;
}
static void free_ip_address(sessionidt s)
{
int i = session[s].ip_pool_index;
CSTAT(free_ip_address);
if (!session[s].ip)
return; // what the?
if (i < 0) // Is this actually part of the ip pool?
i = 0;
STAT(ip_freed);
cache_ipmap(session[s].ip, -i); // Change the mapping to point back to the ip pool index.
session[s].ip = 0;
ip_address_pool[i].assigned = 0;
ip_address_pool[i].session = 0;
ip_address_pool[i].last = time_now;
}
//
// Fsck the address pool against the session table.
// Normally only called when we become a master.
//
// This isn't perfect: We aren't keep tracking of which
// users used to have an IP address.
//
void rebuild_address_pool(void)
{
int i;
//
// Zero the IP pool allocation, and build
// a map from IP address to pool index.
for (i = 1; i < MAXIPPOOL; ++i)
{
ip_address_pool[i].assigned = 0;
ip_address_pool[i].session = 0;
if (!ip_address_pool[i].address)
continue;
cache_ipmap(ip_address_pool[i].address, -i); // Map pool IP to pool index.
}
for (i = 0; i < MAXSESSION; ++i)
{
int ipid;
if (!(session[i].opened && session[i].ip))
continue;
ipid = - lookup_ipmap(htonl(session[i].ip));
if (session[i].ip_pool_index < 0)
{
// Not allocated out of the pool.
if (ipid < 1) // Not found in the pool either? good.
continue;
LOG(0, i, 0, "Session %d has an IP address (%s) that was marked static, but is in the pool (%d)!\n",
i, fmtaddr(session[i].ip, 0), ipid);
// Fall through and process it as part of the pool.
}
if (ipid > MAXIPPOOL || ipid < 0)
{
LOG(0, i, 0, "Session %d has a pool IP that's not found in the pool! (%d)\n", i, ipid);
ipid = -1;
session[i].ip_pool_index = ipid;
continue;
}
ip_address_pool[ipid].assigned = 1;
ip_address_pool[ipid].session = i;
ip_address_pool[ipid].last = time_now;
strncpy(ip_address_pool[ipid].user, session[i].user, sizeof(ip_address_pool[ipid].user) - 1);
session[i].ip_pool_index = ipid;
cache_ipmap(session[i].ip, i); // Fix the ip map.
}
}
//
// Fix the address pool to match a changed session.
// (usually when the master sends us an update).
static void fix_address_pool(int sid)
{
int ipid;
ipid = session[sid].ip_pool_index;
if (ipid > ip_pool_size)
return; // Ignore it. rebuild_address_pool will fix it up.
if (ip_address_pool[ipid].address != session[sid].ip)
return; // Just ignore it. rebuild_address_pool will take care of it.
ip_address_pool[ipid].assigned = 1;
ip_address_pool[ipid].session = sid;
ip_address_pool[ipid].last = time_now;
strncpy(ip_address_pool[ipid].user, session[sid].user, sizeof(ip_address_pool[ipid].user) - 1);
}
//
// Add a block of addresses to the IP pool to hand out.
//
static void add_to_ip_pool(in_addr_t addr, in_addr_t mask)
{
int i;
if (mask == 0)
mask = 0xffffffff; // Host route only.
addr &= mask;
if (ip_pool_size >= MAXIPPOOL) // Pool is full!
return ;
for (i = addr ;(i & mask) == addr; ++i)
{
if ((i & 0xff) == 0 || (i&0xff) == 255)
continue; // Skip 0 and broadcast addresses.
ip_address_pool[ip_pool_size].address = i;
ip_address_pool[ip_pool_size].assigned = 0;
++ip_pool_size;
if (ip_pool_size >= MAXIPPOOL)
{
LOG(0, 0, 0, "Overflowed IP pool adding %s\n", fmtaddr(htonl(addr), 0));
return;
}
}
}
// Initialize the IP address pool
static void initippool()
{
FILE *f;
char *p;
char buf[4096];
memset(ip_address_pool, 0, sizeof(ip_address_pool));
if (!(f = fopen(IPPOOLFILE, "r")))
{
LOG(0, 0, 0, "Can't load pool file " IPPOOLFILE ": %s\n", strerror(errno));
exit(1);
}
while (ip_pool_size < MAXIPPOOL && fgets(buf, 4096, f))
{
char *pool = buf;
buf[4095] = 0; // Force it to be zero terminated/
if (*buf == '#' || *buf == '\n')
continue; // Skip comments / blank lines
if ((p = (char *)strrchr(buf, '\n'))) *p = 0;
if ((p = (char *)strchr(buf, ':')))
{
in_addr_t src;
*p = '\0';
src = inet_addr(buf);
if (src == INADDR_NONE)
{
LOG(0, 0, 0, "Invalid address pool IP %s\n", buf);
exit(1);
}
// This entry is for a specific IP only
if (src != config->bind_address)
continue;
*p = ':';
pool = p+1;
}
if ((p = (char *)strchr(pool, '/')))
{
// It's a range
int numbits = 0;
in_addr_t start = 0, mask = 0;
LOG(2, 0, 0, "Adding IP address range %s\n", buf);
*p++ = 0;
if (!*p || !(numbits = atoi(p)))
{
LOG(0, 0, 0, "Invalid pool range %s\n", buf);
continue;
}
start = ntohl(inet_addr(pool));
mask = (in_addr_t) (pow(2, numbits) - 1) << (32 - numbits);
// Add a static route for this pool
LOG(5, 0, 0, "Adding route for address pool %s/%u\n",
fmtaddr(htonl(start), 0), 32 + mask);
routeset(0, start, mask, 0, 1);
add_to_ip_pool(start, mask);
}
else
{
// It's a single ip address
add_to_ip_pool(inet_addr(pool), 0);
}
}
fclose(f);
LOG(1, 0, 0, "IP address pool is %d addresses\n", ip_pool_size - 1);
}
void snoop_send_packet(uint8_t *packet, uint16_t size, in_addr_t destination, uint16_t port)
{
struct sockaddr_in snoop_addr = {0};
if (!destination || !port || snoopfd <= 0 || size <= 0 || !packet)
return;
snoop_addr.sin_family = AF_INET;
snoop_addr.sin_addr.s_addr = destination;
snoop_addr.sin_port = ntohs(port);
LOG(5, 0, 0, "Snooping %d byte packet to %s:%d\n", size,
fmtaddr(snoop_addr.sin_addr.s_addr, 0),
htons(snoop_addr.sin_port));
if (sendto(snoopfd, packet, size, MSG_DONTWAIT | MSG_NOSIGNAL, (void *) &snoop_addr, sizeof(snoop_addr)) < 0)
LOG(0, 0, 0, "Error sending intercept packet: %s\n", strerror(errno));
STAT(packets_snooped);
}
static int dump_session(FILE **f, sessiont *s)
{
if (!s->opened || !s->ip || !(s->cin_delta || s->cout_delta) || !*s->user || s->walled_garden)
return 1;
if (!*f)
{
char filename[1024];
char timestr[64];
time_t now = time(NULL);
strftime(timestr, sizeof(timestr), "%Y%m%d%H%M%S", localtime(&now));
snprintf(filename, sizeof(filename), "%s/%s", config->accounting_dir, timestr);
if (!(*f = fopen(filename, "w")))
{
LOG(0, 0, 0, "Can't write accounting info to %s: %s\n", filename, strerror(errno));
return 0;
}
LOG(3, 0, 0, "Dumping accounting information to %s\n", filename);
fprintf(*f, "# dslwatch.pl dump file V1.01\n"
"# host: %s\n"
"# endpoint: %s\n"
"# time: %ld\n"
"# uptime: %ld\n"
"# format: username ip qos uptxoctets downrxoctets\n",
hostname,
fmtaddr(config->bind_address ? config->bind_address : my_address, 0),
now,
now - basetime);
}
LOG(4, 0, 0, "Dumping accounting information for %s\n", s->user);
fprintf(*f, "%s %s %d %u %u\n",
s->user, // username
fmtaddr(htonl(s->ip), 0), // ip
(s->throttle_in || s->throttle_out) ? 2 : 1, // qos
(uint32_t) s->cin_delta, // uptxoctets
(uint32_t) s->cout_delta); // downrxoctets
s->cin_delta = s->cout_delta = 0;
return 1;
}
static void dump_acct_info(int all)
{
int i;
FILE *f = NULL;
CSTAT(dump_acct_info);
if (shut_acct_n)
{
for (i = 0; i < shut_acct_n; i++)
dump_session(&f, &shut_acct[i]);
shut_acct_n = 0;
}
if (all)
for (i = 1; i <= config->cluster_highest_sessionid; i++)
dump_session(&f, &session[i]);
if (f)
fclose(f);
}
// Main program
int main(int argc, char *argv[])
{
int i;
int optdebug = 0;
char *optconfig = CONFIGFILE;
time(&basetime); // start clock
// scan args
while ((i = getopt(argc, argv, "dvc:h:")) >= 0)
{
switch (i)
{
case 'd':
if (fork()) exit(0);
setsid();
freopen("/dev/null", "r", stdin);
freopen("/dev/null", "w", stdout);
freopen("/dev/null", "w", stderr);
break;
case 'v':
optdebug++;
break;
case 'c':
optconfig = optarg;
break;
case 'h':
snprintf(hostname, sizeof(hostname), "%s", optarg);
break;
default:
printf("Args are:\n"
"\t-d\t\tDetach from terminal\n"
"\t-c <file>\tConfig file\n"
"\t-h <hostname>\tForce hostname\n"
"\t-v\t\tDebug\n");
return (0);
break;
}
}
// Start the timer routine off
time(&time_now);
strftime(time_now_string, sizeof(time_now_string), "%Y-%m-%d %H:%M:%S", localtime(&time_now));
signal(SIGALRM, sigalrm_handler);
siginterrupt(SIGALRM, 0);
initplugins();
initdata(optdebug, optconfig);
init_cli(hostname);
read_config_file();
init_tbf(config->num_tbfs);
LOG(0, 0, 0, "L2TPNS version " VERSION "\n");
LOG(0, 0, 0, "Copyright (c) 2003, 2004, 2005 Optus Internet Engineering\n");
LOG(0, 0, 0, "Copyright (c) 2002 FireBrick (Andrews & Arnold Ltd / Watchfront Ltd) - GPL licenced\n");
{
struct rlimit rlim;
rlim.rlim_cur = RLIM_INFINITY;
rlim.rlim_max = RLIM_INFINITY;
// Remove the maximum core size
if (setrlimit(RLIMIT_CORE, &rlim) < 0)
LOG(0, 0, 0, "Can't set ulimit: %s\n", strerror(errno));
// Make core dumps go to /tmp
chdir("/tmp");
}
if (config->scheduler_fifo)
{
int ret;
struct sched_param params = {0};
params.sched_priority = 1;
if (get_nprocs() < 2)
{
LOG(0, 0, 0, "Not using FIFO scheduler, there is only 1 processor in the system.\n");
config->scheduler_fifo = 0;
}
else
{
if ((ret = sched_setscheduler(0, SCHED_FIFO, &params)) == 0)
{
LOG(1, 0, 0, "Using FIFO scheduler. Say goodbye to any other processes running\n");
}
else
{
LOG(0, 0, 0, "Error setting scheduler to FIFO: %s\n", strerror(errno));
config->scheduler_fifo = 0;
}
}
}
/* Set up the cluster communications port. */
if (cluster_init() < 0)
exit(1);
inittun();
LOG(1, 0, 0, "Set up on interface %s\n", config->tundevice);
initudp();
initrad();
initippool();
// seed prng
{
unsigned seed = time_now ^ getpid();
LOG(4, 0, 0, "Seeding the pseudo random generator: %u\n", seed);
srand(seed);
}
signal(SIGHUP, sighup_handler);
signal(SIGCHLD, sigchild_handler);
signal(SIGTERM, shutdown_handler);
signal(SIGINT, shutdown_handler);
signal(SIGQUIT, shutdown_handler);
// Prevent us from getting paged out
if (config->lock_pages)
{
if (!mlockall(MCL_CURRENT))
LOG(1, 0, 0, "Locking pages into memory\n");
else
LOG(0, 0, 0, "Can't lock pages: %s\n", strerror(errno));
}
alarm(1);
// Drop privileges here
if (config->target_uid > 0 && geteuid() == 0)
setuid(config->target_uid);
mainloop();
/* remove plugins (so cleanup code gets run) */
plugins_done();
// Remove the PID file if we wrote it
if (config->wrote_pid && *config->pid_file == '/')
unlink(config->pid_file);
/* kill CLI children */
signal(SIGTERM, SIG_IGN);
kill(0, SIGTERM);
return 0;
}
static void sighup_handler(int sig)
{
if (log_stream)
{
if (log_stream != stderr)
fclose(log_stream);
log_stream = NULL;
}
read_config_file();
}
static void sigalrm_handler(int sig)
{
// Log current traffic stats
snprintf(config->bandwidth, sizeof(config->bandwidth),
"UDP-ETH:%1.0f/%1.0f ETH-UDP:%1.0f/%1.0f TOTAL:%0.1f IN:%u OUT:%u",
(udp_rx / 1024.0 / 1024.0 * 8),
(eth_tx / 1024.0 / 1024.0 * 8),
(eth_rx / 1024.0 / 1024.0 * 8),
(udp_tx / 1024.0 / 1024.0 * 8),
((udp_tx + udp_rx + eth_tx + eth_rx) / 1024.0 / 1024.0 * 8),
udp_rx_pkt, eth_rx_pkt);
udp_tx = udp_rx = 0;
udp_rx_pkt = eth_rx_pkt = 0;
eth_tx = eth_rx = 0;
if (config->dump_speed)
printf("%s\n", config->bandwidth);
// Update the internal time counter
time(&time_now);
strftime(time_now_string, sizeof(time_now_string), "%Y-%m-%d %H:%M:%S", localtime(&time_now));
alarm(1);
{
// Run timer hooks
struct param_timer p = { time_now };
run_plugins(PLUGIN_TIMER, &p);
}
}
static void shutdown_handler(int sig)
{
LOG(1, 0, 0, "Shutting down\n");
main_quit = (sig == SIGQUIT) ? QUIT_SHUTDOWN : QUIT_FAILOVER;
}
static void sigchild_handler(int sig)
{
while (waitpid(-1, NULL, WNOHANG) > 0)
;
}
static void build_chap_response(uint8_t *challenge, uint8_t id, uint16_t challenge_length, uint8_t **challenge_response)
{
MD5_CTX ctx;
*challenge_response = NULL;
if (!*config->l2tpsecret)
{
LOG(0, 0, 0, "LNS requested CHAP authentication, but no l2tp secret is defined\n");
return;
}
LOG(4, 0, 0, " Building challenge response for CHAP request\n");
*challenge_response = calloc(17, 1);
MD5_Init(&ctx);
MD5_Update(&ctx, &id, 1);
MD5_Update(&ctx, config->l2tpsecret, strlen(config->l2tpsecret));
MD5_Update(&ctx, challenge, challenge_length);
MD5_Final(*challenge_response, &ctx);
return;
}
static int facility_value(char *name)
{
int i;
for (i = 0; facilitynames[i].c_name; i++)
{
if (strcmp(facilitynames[i].c_name, name) == 0)
return facilitynames[i].c_val;
}
return 0;
}
static void update_config()
{
int i;
char *p;
static int timeout = 0;
static int interval = 0;
// Update logging
closelog();
syslog_log = 0;
if (log_stream)
{
if (log_stream != stderr)
fclose(log_stream);
log_stream = NULL;
}
if (*config->log_filename)
{
if (strstr(config->log_filename, "syslog:") == config->log_filename)
{
char *p = config->log_filename + 7;
if (*p)
{
openlog("l2tpns", LOG_PID, facility_value(p));
syslog_log = 1;
}
}
else if (strchr(config->log_filename, '/') == config->log_filename)
{
if ((log_stream = fopen((char *)(config->log_filename), "a")))
{
fseek(log_stream, 0, SEEK_END);
setbuf(log_stream, NULL);
}
else
{
log_stream = stderr;
setbuf(log_stream, NULL);
}
}
}
else
{
log_stream = stderr;
setbuf(log_stream, NULL);
}
// Update radius
config->numradiusservers = 0;
for (i = 0; i < MAXRADSERVER; i++)
if (config->radiusserver[i])
{
config->numradiusservers++;
// Set radius port: if not set, take the port from the
// first radius server. For the first radius server,
// take the #defined default value from l2tpns.h
// test twice, In case someone works with
// a secondary radius server without defining
// a primary one, this will work even then.
if (i > 0 && !config->radiusport[i])
config->radiusport[i] = config->radiusport[i-1];
if (!config->radiusport[i])
config->radiusport[i] = RADPORT;
}
if (!config->numradiusservers)
LOG(0, 0, 0, "No RADIUS servers defined!\n");
// parse radius_authtypes_s
config->radius_authtypes = config->radius_authprefer = 0;
p = config->radius_authtypes_s;
while (p && *p)
{
char *s = strpbrk(p, " \t,");
int type = 0;
if (s)
{
*s++ = 0;
while (*s == ' ' || *s == '\t')
s++;
if (!*s)
s = 0;
}
if (!strncasecmp("chap", p, strlen(p)))
type = AUTHCHAP;
else if (!strncasecmp("pap", p, strlen(p)))
type = AUTHPAP;
else
LOG(0, 0, 0, "Invalid RADIUS authentication type \"%s\"\n", p);
config->radius_authtypes |= type;
if (!config->radius_authprefer)
config->radius_authprefer = type;
p = s;
}
if (!config->radius_authtypes)
{
LOG(0, 0, 0, "Defaulting to PAP authentication\n");
config->radius_authtypes = config->radius_authprefer = AUTHPAP;
}
// normalise radius_authtypes_s
if (config->radius_authprefer == AUTHPAP)
{
strcpy(config->radius_authtypes_s, "pap");
if (config->radius_authtypes & AUTHCHAP)
strcat(config->radius_authtypes_s, ", chap");
}
else
{
strcpy(config->radius_authtypes_s, "chap");
if (config->radius_authtypes & AUTHPAP)
strcat(config->radius_authtypes_s, ", pap");
}
if (!config->radius_dae_port)
config->radius_dae_port = DAEPORT;
// re-initialise the random number source
initrandom(config->random_device);
// Update plugins
for (i = 0; i < MAXPLUGINS; i++)
{
if (strcmp(config->plugins[i], config->old_plugins[i]) == 0)
continue;
if (*config->plugins[i])
{
// Plugin added
add_plugin(config->plugins[i]);
}
else if (*config->old_plugins[i])
{
// Plugin removed
remove_plugin(config->old_plugins[i]);
}
}
memcpy(config->old_plugins, config->plugins, sizeof(config->plugins));
if (!config->multi_read_count) config->multi_read_count = 10;
if (!config->cluster_address) config->cluster_address = inet_addr(DEFAULT_MCAST_ADDR);
if (!*config->cluster_interface)
strncpy(config->cluster_interface, DEFAULT_MCAST_INTERFACE, sizeof(config->cluster_interface) - 1);
if (!config->cluster_hb_interval)
config->cluster_hb_interval = PING_INTERVAL; // Heartbeat every 0.5 seconds.
if (!config->cluster_hb_timeout)
config->cluster_hb_timeout = HB_TIMEOUT; // 10 missed heartbeat triggers an election.
if (interval != config->cluster_hb_interval || timeout != config->cluster_hb_timeout)
{
// Paranoia: cluster_check_master() treats 2 x interval + 1 sec as
// late, ensure we're sufficiently larger than that
int t = 4 * config->cluster_hb_interval + 11;
if (config->cluster_hb_timeout < t)
{
LOG(0, 0, 0, "Heartbeat timeout %d too low, adjusting to %d\n", config->cluster_hb_timeout, t);
config->cluster_hb_timeout = t;
}
// Push timing changes to the slaves immediately if we're the master
if (config->cluster_iam_master)
cluster_heartbeat();
interval = config->cluster_hb_interval;
timeout = config->cluster_hb_timeout;
}
// Write PID file
if (*config->pid_file == '/' && !config->wrote_pid)
{
FILE *f;
if ((f = fopen(config->pid_file, "w")))
{
fprintf(f, "%d\n", getpid());
fclose(f);
config->wrote_pid = 1;
}
else
{
LOG(0, 0, 0, "Can't write to PID file %s: %s\n", config->pid_file, strerror(errno));
}
}
config->reload_config = 0;
}
static void read_config_file()
{
FILE *f;
if (!config->config_file) return;
if (!(f = fopen(config->config_file, "r")))
{
fprintf(stderr, "Can't open config file %s: %s\n", config->config_file, strerror(errno));
return;
}
LOG(3, 0, 0, "Reading config file %s\n", config->config_file);
cli_do_file(f);
LOG(3, 0, 0, "Done reading config file\n");
fclose(f);
update_config();
}
int sessionsetup(tunnelidt t, sessionidt s)
{
// A session now exists, set it up
in_addr_t ip;
char *user;
sessionidt i;
int r;
CSTAT(sessionsetup);
LOG(3, s, t, "Doing session setup for session\n");
if (!session[s].ip)
{
assign_ip_address(s);
if (!session[s].ip)
{
LOG(0, s, t, " No IP allocated. The IP address pool is FULL!\n");
sessionshutdown(s, "No IP addresses available.", 2, 7); // try another
return 0;
}
LOG(3, s, t, " No IP allocated. Assigned %s from pool\n",
fmtaddr(htonl(session[s].ip), 0));
}
// Make sure this is right
session[s].tunnel = t;
// zap old sessions with same IP and/or username
// Don't kill gardened sessions - doing so leads to a DoS
// from someone who doesn't need to know the password
{
ip = session[s].ip;
user = session[s].user;
for (i = 1; i <= config->cluster_highest_sessionid; i++)
{
if (i == s) continue;
if (!session[s].opened) continue;
if (ip == session[i].ip)
{
sessionkill(i, "Duplicate IP address");
continue;
}
if (config->allow_duplicate_users) continue;
if (session[s].walled_garden || session[i].walled_garden) continue;
if (!strcasecmp(user, session[i].user))
sessionkill(i, "Duplicate session for users");
}
}
{
int routed = 0;
// Add the route for this session.
for (r = 0; r < MAXROUTE && session[s].route[r].ip; r++)
{
if ((session[s].ip & session[s].route[r].mask) ==
(session[s].route[r].ip & session[s].route[r].mask))
routed++;
routeset(s, session[s].route[r].ip, session[s].route[r].mask, 0, 1);
}
// Static IPs need to be routed if not already
// convered by a Framed-Route. Anything else is part
// of the IP address pool and is already routed, it
// just needs to be added to the IP cache.
// IPv6 route setup is done in ppp.c, when IPV6CP is acked.
if (session[s].ip_pool_index == -1) // static ip
{
if (!routed) routeset(s, session[s].ip, 0, 0, 1);
}
else
cache_ipmap(session[s].ip, s);
}
sess_local[s].lcp_authtype = 0; // RADIUS authentication complete
lcp_open(t, s); // transition to Network phase and send initial IPCP
// Run the plugin's against this new session.
{
struct param_new_session data = { &tunnel[t], &session[s] };
run_plugins(PLUGIN_NEW_SESSION, &data);
}
// Allocate TBFs if throttled
if (session[s].throttle_in || session[s].throttle_out)
throttle_session(s, session[s].throttle_in, session[s].throttle_out);
session[s].last_packet = time_now;
LOG(2, s, t, "Login by %s at %s from %s (%s)\n", session[s].user,
fmtaddr(htonl(session[s].ip), 0),
fmtaddr(htonl(tunnel[t].ip), 1), tunnel[t].hostname);
cluster_send_session(s); // Mark it as dirty, and needing to the flooded to the cluster.
return 1; // RADIUS OK and IP allocated, done...
}
//
// This session just got dropped on us by the master or something.
// Make sure our tables up up to date...
//
int load_session(sessionidt s, sessiont *new)
{
int i;
int newip = 0;
// Sanity checks.
if (new->ip_pool_index >= MAXIPPOOL ||
new->tunnel >= MAXTUNNEL)
{
LOG(0, s, 0, "Strange session update received!\n");
// FIXME! What to do here?
return 0;
}
//
// Ok. All sanity checks passed. Now we're committed to
// loading the new session.
//
session[s].tunnel = new->tunnel; // For logging in cache_ipmap
// See if routes/ip cache need updating
if (new->ip != session[s].ip)
newip++;
for (i = 0; !newip && i < MAXROUTE && (session[s].route[i].ip || new->route[i].ip); i++)
if (new->route[i].ip != session[s].route[i].ip ||
new->route[i].mask != session[s].route[i].mask)
newip++;
// needs update
if (newip)
{
int routed = 0;
// remove old routes...
for (i = 0; i < MAXROUTE && session[s].route[i].ip; i++)
{
if ((session[s].ip & session[s].route[i].mask) ==
(session[s].route[i].ip & session[s].route[i].mask))
routed++;
routeset(s, session[s].route[i].ip, session[s].route[i].mask, 0, 0);
}
// ...ip
if (session[s].ip)
{
if (session[s].ip_pool_index == -1) // static IP
{
if (!routed) routeset(s, session[s].ip, 0, 0, 0);
}
else // It's part of the IP pool, remove it manually.
uncache_ipmap(session[s].ip);
}
routed = 0;
// add new routes...
for (i = 0; i < MAXROUTE && new->route[i].ip; i++)
{
if ((new->ip & new->route[i].mask) ==
(new->route[i].ip & new->route[i].mask))
routed++;
routeset(s, new->route[i].ip, new->route[i].mask, 0, 1);
}
// ...ip
if (new->ip)
{
// If there's a new one, add it.
if (new->ip_pool_index == -1)
{
if (!routed) routeset(s, new->ip, 0, 0, 1);
}
else
cache_ipmap(new->ip, s);
}
}
// check v6 routing
if (new->ipv6prefixlen && new->ppp.ipv6cp == Opened && session[s].ppp.ipv6cp != Opened)
route6set(s, new->ipv6route, new->ipv6prefixlen, 1);
// check filters
if (new->filter_in && (new->filter_in > MAXFILTER || !ip_filters[new->filter_in - 1].name[0]))
{
LOG(2, s, session[s].tunnel, "Dropping invalid input filter %d\n", (int) new->filter_in);
new->filter_in = 0;
}
if (new->filter_out && (new->filter_out > MAXFILTER || !ip_filters[new->filter_out - 1].name[0]))
{
LOG(2, s, session[s].tunnel, "Dropping invalid output filter %d\n", (int) new->filter_out);
new->filter_out = 0;
}
if (new->filter_in != session[s].filter_in)
{
if (session[s].filter_in) ip_filters[session[s].filter_in - 1].used--;
if (new->filter_in) ip_filters[new->filter_in - 1].used++;
}
if (new->filter_out != session[s].filter_out)
{
if (session[s].filter_out) ip_filters[session[s].filter_out - 1].used--;
if (new->filter_out) ip_filters[new->filter_out - 1].used++;
}
if (new->tunnel && s > config->cluster_highest_sessionid) // Maintain this in the slave. It's used
// for walking the sessions to forward byte counts to the master.
config->cluster_highest_sessionid = s;
memcpy(&session[s], new, sizeof(session[s])); // Copy over..
// Do fixups into address pool.
if (new->ip_pool_index != -1)
fix_address_pool(s);
return 1;
}
static void initplugins()
{
int i;
loaded_plugins = ll_init();
// Initialize the plugins to nothing
for (i = 0; i < MAX_PLUGIN_TYPES; i++)
plugins[i] = ll_init();
}
static void *open_plugin(char *plugin_name, int load)
{
char path[256] = "";
snprintf(path, 256, PLUGINDIR "/%s.so", plugin_name);
LOG(2, 0, 0, "%soading plugin from %s\n", load ? "L" : "Un-l", path);
return dlopen(path, RTLD_NOW);
}
// plugin callback to get a config value
static void *getconfig(char *key, enum config_typet type)
{
int i;
for (i = 0; config_values[i].key; i++)
{
if (!strcmp(config_values[i].key, key))
{
if (config_values[i].type == type)
return ((void *) config) + config_values[i].offset;
LOG(1, 0, 0, "plugin requested config item \"%s\" expecting type %d, have type %d\n",
key, type, config_values[i].type);
return 0;
}
}
LOG(1, 0, 0, "plugin requested unknown config item \"%s\"\n", key);
return 0;
}
static int add_plugin(char *plugin_name)
{
static struct pluginfuncs funcs = {
_log,
_log_hex,
fmtaddr,
sessionbyuser,
sessiontbysessionidt,
sessionidtbysessiont,
radiusnew,
radiussend,
getconfig,
sessionshutdown,
sessionkill,
throttle_session,
cluster_send_session,
};
void *p = open_plugin(plugin_name, 1);
int (*initfunc)(struct pluginfuncs *);
int i;
if (!p)
{
LOG(1, 0, 0, " Plugin load failed: %s\n", dlerror());
return -1;
}
if (ll_contains(loaded_plugins, p))
{
dlclose(p);
return 0; // already loaded
}
{
int *v = dlsym(p, "plugin_api_version");
if (!v || *v != PLUGIN_API_VERSION)
{
LOG(1, 0, 0, " Plugin load failed: API version mismatch: %s\n", dlerror());
dlclose(p);
return -1;
}
}
if ((initfunc = dlsym(p, "plugin_init")))
{
if (!initfunc(&funcs))
{
LOG(1, 0, 0, " Plugin load failed: plugin_init() returned FALSE: %s\n", dlerror());
dlclose(p);
return -1;
}
}
ll_push(loaded_plugins, p);
for (i = 0; i < max_plugin_functions; i++)
{
void *x;
if (plugin_functions[i] && (x = dlsym(p, plugin_functions[i])))
{
LOG(3, 0, 0, " Supports function \"%s\"\n", plugin_functions[i]);
ll_push(plugins[i], x);
}
}
LOG(2, 0, 0, " Loaded plugin %s\n", plugin_name);
return 1;
}
static void run_plugin_done(void *plugin)
{
int (*donefunc)(void) = dlsym(plugin, "plugin_done");
if (donefunc)
donefunc();
}
static int remove_plugin(char *plugin_name)
{
void *p = open_plugin(plugin_name, 0);
int loaded = 0;
if (!p)
return -1;
if (ll_contains(loaded_plugins, p))
{
int i;
for (i = 0; i < max_plugin_functions; i++)
{
void *x;
if (plugin_functions[i] && (x = dlsym(p, plugin_functions[i])))
ll_delete(plugins[i], x);
}
ll_delete(loaded_plugins, p);
run_plugin_done(p);
loaded = 1;
}
dlclose(p);
LOG(2, 0, 0, "Removed plugin %s\n", plugin_name);
return loaded;
}
int run_plugins(int plugin_type, void *data)
{
int (*func)(void *data);
if (!plugins[plugin_type] || plugin_type > max_plugin_functions)
return PLUGIN_RET_ERROR;
ll_reset(plugins[plugin_type]);
while ((func = ll_next(plugins[plugin_type])))
{
int r = func(data);
if (r != PLUGIN_RET_OK)
return r; // stop here
}
return PLUGIN_RET_OK;
}
static void plugins_done()
{
void *p;
ll_reset(loaded_plugins);
while ((p = ll_next(loaded_plugins)))
run_plugin_done(p);
}
static void processcontrol(uint8_t *buf, int len, struct sockaddr_in *addr, int alen)
{
struct nsctl request;
struct nsctl response;
int type = unpack_control(&request, buf, len);
int r;
void *p;
if (log_stream && config->debug >= 4)
{
if (type < 0)
{
LOG(4, 0, 0, "Bogus control message from %s (%d)\n",
fmtaddr(addr->sin_addr.s_addr, 0), type);
}
else
{
LOG(4, 0, 0, "Received [%s] ", fmtaddr(addr->sin_addr.s_addr, 0));
dump_control(&request, log_stream);
}
}
switch (type)
{
case NSCTL_REQ_LOAD:
if (request.argc != 1)
{
response.type = NSCTL_RES_ERR;
response.argc = 1;
response.argv[0] = "name of plugin required";
}
else if ((r = add_plugin(request.argv[0])) < 1)
{
response.type = NSCTL_RES_ERR;
response.argc = 1;
response.argv[0] = !r
? "plugin already loaded"
: "error loading plugin";
}
else
{
response.type = NSCTL_RES_OK;
response.argc = 0;
}
break;
case NSCTL_REQ_UNLOAD:
if (request.argc != 1)
{
response.type = NSCTL_RES_ERR;
response.argc = 1;
response.argv[0] = "name of plugin required";
}
else if ((r = remove_plugin(request.argv[0])) < 1)
{
response.type = NSCTL_RES_ERR;
response.argc = 1;
response.argv[0] = !r
? "plugin not loaded"
: "plugin not found";
}
else
{
response.type = NSCTL_RES_OK;
response.argc = 0;
}
break;
case NSCTL_REQ_HELP:
response.type = NSCTL_RES_OK;
response.argc = 0;
ll_reset(loaded_plugins);
while ((p = ll_next(loaded_plugins)))
{
char **help = dlsym(p, "plugin_control_help");
while (response.argc < 0xff && help && *help)
response.argv[response.argc++] = *help++;
}
break;
case NSCTL_REQ_CONTROL:
{
struct param_control param = {
config->cluster_iam_master,
request.argc,
request.argv,
0,
NULL,
};
int r = run_plugins(PLUGIN_CONTROL, &param);
if (r == PLUGIN_RET_ERROR)
{
response.type = NSCTL_RES_ERR;
response.argc = 1;
response.argv[0] = param.additional
? param.additional
: "error returned by plugin";
}
else if (r == PLUGIN_RET_NOTMASTER)
{
static char msg[] = "must be run on master: 000.000.000.000";
response.type = NSCTL_RES_ERR;
response.argc = 1;
if (config->cluster_master_address)
{
strcpy(msg + 23, fmtaddr(config->cluster_master_address, 0));
response.argv[0] = msg;
}
else
{
response.argv[0] = "must be run on master: none elected";
}
}
else if (!(param.response & NSCTL_RESPONSE))
{
response.type = NSCTL_RES_ERR;
response.argc = 1;
response.argv[0] = param.response
? "unrecognised response value from plugin"
: "unhandled action";
}
else
{
response.type = param.response;
response.argc = 0;
if (param.additional)
{
response.argc = 1;
response.argv[0] = param.additional;
}
}
}
break;
default:
response.type = NSCTL_RES_ERR;
response.argc = 1;
response.argv[0] = "error unpacking control packet";
}
buf = calloc(NSCTL_MAX_PKT_SZ, 1);
if (!buf)
{
LOG(2, 0, 0, "Failed to allocate nsctl response\n");
return;
}
r = pack_control(buf, NSCTL_MAX_PKT_SZ, response.type, response.argc, response.argv);
if (r > 0)
{
sendto(controlfd, buf, r, 0, (const struct sockaddr *) addr, alen);
if (log_stream && config->debug >= 4)
{
LOG(4, 0, 0, "Sent [%s] ", fmtaddr(addr->sin_addr.s_addr, 0));
dump_control(&response, log_stream);
}
}
else
LOG(2, 0, 0, "Failed to pack nsctl response for %s (%d)\n",
fmtaddr(addr->sin_addr.s_addr, 0), r);
free(buf);
}
static tunnelidt new_tunnel()
{
tunnelidt i;
for (i = 1; i < MAXTUNNEL; i++)
{
if (tunnel[i].state == TUNNELFREE)
{
LOG(4, 0, i, "Assigning tunnel ID %d\n", i);
if (i > config->cluster_highest_tunnelid)
config->cluster_highest_tunnelid = i;
return i;
}
}
LOG(0, 0, 0, "Can't find a free tunnel! There shouldn't be this many in use!\n");
return 0;
}
//
// We're becoming the master. Do any required setup..
//
// This is principally telling all the plugins that we're
// now a master, and telling them about all the sessions
// that are active too..
//
void become_master(void)
{
int s, i;
static struct event_data d[RADIUS_FDS];
struct epoll_event e;
run_plugins(PLUGIN_BECOME_MASTER, NULL);
// running a bunch of iptables commands is slow and can cause
// the master to drop tunnels on takeover--kludge around the
// problem by forking for the moment (note: race)
if (!fork_and_close())
{
for (s = 1; s <= config->cluster_highest_sessionid ; ++s)
{
if (!session[s].opened) // Not an in-use session.
continue;
run_plugins(PLUGIN_NEW_SESSION_MASTER, &session[s]);
}
exit(0);
}
// add radius fds
e.events = EPOLLIN;
for (i = 0; i < RADIUS_FDS; i++)
{
d[i].type = FD_TYPE_RADIUS;
d[i].index = i;
e.data.ptr = &d[i];
epoll_ctl(epollfd, EPOLL_CTL_ADD, radfds[i], &e);
}
}
int cmd_show_hist_idle(struct cli_def *cli, char *command, char **argv, int argc)
{
int s, i;
int count = 0;
int buckets[64];
if (CLI_HELP_REQUESTED)
return CLI_HELP_NO_ARGS;
time(&time_now);
for (i = 0; i < 64;++i) buckets[i] = 0;
for (s = 1; s <= config->cluster_highest_sessionid ; ++s)
{
int idle;
if (!session[s].opened)
continue;
idle = time_now - session[s].last_packet;
idle /= 5 ; // In multiples of 5 seconds.
if (idle < 0)
idle = 0;
if (idle > 63)
idle = 63;
++count;
++buckets[idle];
}
for (i = 0; i < 63; ++i)
{
cli_print(cli, "%3d seconds : %7.2f%% (%6d)", i * 5, (double) buckets[i] * 100.0 / count , buckets[i]);
}
cli_print(cli, "lots of secs : %7.2f%% (%6d)", (double) buckets[63] * 100.0 / count , buckets[i]);
cli_print(cli, "%d total sessions open.", count);
return CLI_OK;
}
int cmd_show_hist_open(struct cli_def *cli, char *command, char **argv, int argc)
{
int s, i;
int count = 0;
int buckets[64];
if (CLI_HELP_REQUESTED)
return CLI_HELP_NO_ARGS;
time(&time_now);
for (i = 0; i < 64;++i) buckets[i] = 0;
for (s = 1; s <= config->cluster_highest_sessionid ; ++s)
{
int open = 0, d;
if (!session[s].opened)
continue;
d = time_now - session[s].opened;
if (d < 0)
d = 0;
while (d > 1 && open < 32)
{
++open;
d >>= 1; // half.
}
++count;
++buckets[open];
}
s = 1;
for (i = 0; i < 30; ++i)
{
cli_print(cli, " < %8d seconds : %7.2f%% (%6d)", s, (double) buckets[i] * 100.0 / count , buckets[i]);
s <<= 1;
}
cli_print(cli, "%d total sessions open.", count);
return CLI_OK;
}
/* Unhide an avp.
*
* This unencodes the AVP using the L2TP secret and the previously
* stored random vector. It overwrites the hidden data with the
* unhidden AVP subformat.
*/
static void unhide_value(uint8_t *value, size_t len, uint16_t type, uint8_t *vector, size_t vec_len)
{
MD5_CTX ctx;
uint8_t digest[16];
uint8_t *last;
size_t d = 0;
uint16_t m = htons(type);
// Compute initial pad
MD5_Init(&ctx);
MD5_Update(&ctx, (unsigned char *) &m, 2);
MD5_Update(&ctx, config->l2tpsecret, strlen(config->l2tpsecret));
MD5_Update(&ctx, vector, vec_len);
MD5_Final(digest, &ctx);
// pointer to last decoded 16 octets
last = value;
while (len > 0)
{
// calculate a new pad based on the last decoded block
if (d >= sizeof(digest))
{
MD5_Init(&ctx);
MD5_Update(&ctx, config->l2tpsecret, strlen(config->l2tpsecret));
MD5_Update(&ctx, last, sizeof(digest));
MD5_Final(digest, &ctx);
d = 0;
last = value;
}
*value++ ^= digest[d++];
len--;
}
}
int find_filter(char const *name, size_t len)
{
int free = -1;
int i;
for (i = 0; i < MAXFILTER; i++)
{
if (!*ip_filters[i].name)
{
if (free < 0)
free = i;
continue;
}
if (strlen(ip_filters[i].name) != len)
continue;
if (!strncmp(ip_filters[i].name, name, len))
return i;
}
return free;
}
static int ip_filter_port(ip_filter_portt *p, uint16_t port)
{
switch (p->op)
{
case FILTER_PORT_OP_EQ: return port == p->port;
case FILTER_PORT_OP_NEQ: return port != p->port;
case FILTER_PORT_OP_GT: return port > p->port;
case FILTER_PORT_OP_LT: return port < p->port;
case FILTER_PORT_OP_RANGE: return port >= p->port && port <= p->port2;
}
return 0;
}
static int ip_filter_flag(uint8_t op, uint8_t sflags, uint8_t cflags, uint8_t flags)
{
switch (op)
{
case FILTER_FLAG_OP_ANY:
return (flags & sflags) || (~flags & cflags);
case FILTER_FLAG_OP_ALL:
return (flags & sflags) == sflags && (~flags & cflags) == cflags;
case FILTER_FLAG_OP_EST:
return (flags & (TCP_FLAG_ACK|TCP_FLAG_RST)) && (~flags & TCP_FLAG_SYN);
}
return 0;
}
int ip_filter(uint8_t *buf, int len, uint8_t filter)
{
uint16_t frag_offset;
uint8_t proto;
in_addr_t src_ip;
in_addr_t dst_ip;
uint16_t src_port = 0;
uint16_t dst_port = 0;
uint8_t flags = 0;
ip_filter_rulet *rule;
if (len < 20) // up to end of destination address
return 0;
if ((*buf >> 4) != 4) // IPv4
return 0;
frag_offset = ntohs(*(uint16_t *) (buf + 6)) & 0x1fff;
proto = buf[9];
src_ip = *(in_addr_t *) (buf + 12);
dst_ip = *(in_addr_t *) (buf + 16);
if (frag_offset == 0 && (proto == IPPROTO_TCP || proto == IPPROTO_UDP))
{
int l = (buf[0] & 0xf) * 4; // length of IP header
if (len < l + 4) // ports
return 0;
src_port = ntohs(*(uint16_t *) (buf + l));
dst_port = ntohs(*(uint16_t *) (buf + l + 2));
if (proto == IPPROTO_TCP)
{
if (len < l + 14) // flags
return 0;
flags = buf[l + 13] & 0x3f;
}
}
for (rule = ip_filters[filter].rules; rule->action; rule++)
{
if (rule->proto != IPPROTO_IP && proto != rule->proto)
continue;
if (rule->src_wild != INADDR_BROADCAST &&
(src_ip & ~rule->src_wild) != (rule->src_ip & ~rule->src_wild))
continue;
if (rule->dst_wild != INADDR_BROADCAST &&
(dst_ip & ~rule->dst_wild) != (rule->dst_ip & ~rule->dst_wild))
continue;
if (frag_offset)
{
if (!rule->frag || rule->action == FILTER_ACTION_DENY)
continue;
}
else
{
if (rule->frag)
continue;
if (proto == IPPROTO_TCP || proto == IPPROTO_UDP)
{
if (rule->src_ports.op && !ip_filter_port(&rule->src_ports, src_port))
continue;
if (rule->dst_ports.op && !ip_filter_port(&rule->dst_ports, dst_port))
continue;
if (proto == IPPROTO_TCP && rule->tcp_flag_op &&
!ip_filter_flag(rule->tcp_flag_op, rule->tcp_sflags, rule->tcp_cflags, flags))
continue;
}
}
// matched
rule->counter++;
return rule->action == FILTER_ACTION_PERMIT;
}
// default deny
return 0;
}