Inital commit

This commit is contained in:
Olof hagsand 2016-02-22 22:17:30 +01:00
parent edc5e091bb
commit d6e393ea58
145 changed files with 58117 additions and 0 deletions

114
example/Makefile.in Normal file
View file

@ -0,0 +1,114 @@
#
# Makefile
#
# Copyright (C) 2009-2016 Olof Hagsand and Benny Holmgren
#
# This file is part of CLICON.
#
# CLICON is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# CLICON is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with CLICON; see the file COPYING. If not, see
# <http://www.gnu.org/licenses/>.
#
#
VPATH = @srcdir@
srcdir = @srcdir@
top_srcdir = @top_srcdir@
prefix = @prefix@
bindir = @bindir@
includedir = @includedir@
datarootdir = @datarootdir@
APPNAME = routing
CC = @CC@
CFLAGS = @CFLAGS@ -rdynamic -fPIC
INCLUDES = -I$(includedir) @INCLUDES@
BE_PLUGIN = $(APPNAME)_backend.so
CLI_PLUGIN = $(APPNAME)_cli.so
NETCONF_PLUGIN = $(APPNAME)_netconf.so
PLUGINS = $(BE_PLUGIN) $(CLI_PLUGIN) $(NETCONF_PLUGIN)
all: $(PLUGINS) $(APPNAME).conf
# Note: clicon.mk has a rule for:
# $(APPNAME.conf)
-include $(DESTDIR)$(datarootdir)/clicon/clicon.mk
CLISPECS = routing_cli.cli
YANGSPECS = $(APPNAME).yang
YANGSPECS += ietf-yang-types@2013-07-15.yang
YANGSPECS += ietf-inet-types@2013-07-15.yang
YANGSPECS += ietf-interfaces@2014-05-08.yang
YANGSPECS += ietf-ip@2014-06-16.yang
YANGSPECS += ietf-routing@2014-10-26.yang
YANGSPECS += ietf-ipv4-unicast-routing@2014-10-26.yang
YANGSPECS += ietf-ipv6-unicast-routing@2014-10-26.yang
# Backend plugin
BE_SRC = routing_backend.c
BE_OBJ = $(BE_SRC:%.c=%.o)
$(BE_PLUGIN): $(BE_OBJ)
$(CC) -shared -o $@ -lc $<
# CLI frontend plugin
CLI_SRC = routing_cli.c
CLI_OBJ = $(CLI_SRC:%.c=%.o)
$(CLI_PLUGIN): $(CLI_OBJ)
$(CC) -shared -o $@ -lc $^
# NETCONF frontend plugin
NETCONF_SRC = routing_netconf.c
NETCONF_OBJ = $(NETCONF_SRC:%.c=%.o)
$(NETCONF_PLUGIN): $(NETCONF_OBJ)
$(CC) -shared -o $@ -lc $^
SRC = $(BE_SRC) $(CLI_SRC) $(NETCONF_SRC)
OBJS = $(BE_OBJ) $(CLI_OBJ) $(NETCONF_OBJ)
clean:
rm -f $(PLUGINS) $(OBJS) $(APPNAME).conf
distclean: clean
rm -f Makefile *~ .depend
install: $(YANGSPECS) $(CLISPECS) $(BE_PLUGIN) $(CLI_PLUGIN) $(NETCONF_PLUGIN) $(APPNAME).conf
install -d $(DESTDIR)$(clicon_SYSCONFDIR)
install $(APPNAME).conf $(DESTDIR)$(clicon_SYSCONFDIR)
install -d $(DESTDIR)$(clicon_DBSPECDIR)/yang
install $(YANGSPECS) $(DESTDIR)$(clicon_DBSPECDIR)/yang
install -d $(DESTDIR)$(clicon_LIBDIR)/cli
install $(CLI_PLUGIN) $(DESTDIR)$(clicon_LIBDIR)/cli;
install -d $(DESTDIR)$(clicon_LIBDIR)/backend
install $(BE_PLUGIN) $(DESTDIR)$(clicon_LIBDIR)/backend;
install -d $(DESTDIR)$(clicon_LIBDIR)/netconf
install $(NETCONF_PLUGIN) $(DESTDIR)$(clicon_LIBDIR)/netconf;
install -d $(DESTDIR)$(clicon_LIBDIR)/clispec
install $(CLISPECS) $(DESTDIR)$(clicon_LIBDIR)/clispec;
install -d $(DESTDIR)$(clicon_LOCALSTATEDIR)
uninstall:
rm -rf $(DESTDIR)$(clicon_SYSCONFDIR)/$(APPNAME).conf
rm -rf $(DESTDIR)$(clicon_DBSPECDIR)
rm -rf $(DESTDIR)$(clicon_LOCALSTATEDIR)
rm -rf $(DESTDIR)$(clicon_LIBDIR)
install-include:
depend:
$(CC) $(DEPENDFLAGS) $(INCLUDES) $(CFLAGS) -MM $(SRC) > .depend
#include .depend

27
example/README Normal file
View file

@ -0,0 +1,27 @@
Examples using netconf
<rpc><edit-config><target><candidate/></target><config>
<interfaces>
<interface>
<name>eth1</name>
<enabled>true</enabled>
<ipv4>
<address>
<ip>9.2.3.4</ip>
<prefix-length>24</prefix-length>
</address>
</ipv4>
</interface>
</interfaces>
</config></edit-config></rpc>]]>]]>
* no filter + no config
<rpc><get-config><source><candidate/></source></get-config></rpc>]]>]]>
* filter subnet + no config:
<rpc><get-config><source><candidate/></source><filter/></get-config></rpc>]]>]]>
* filter xpath + no select:
<rpc><get-config><source><candidate/></source><filter type="xpath"/></get-config></rpc>]]>]]>
* filter subnet + config:
<rpc><get-config><source><candidate/></source><filter type="subtree"><configuration><interfaces><interface><ipv4/></interface></interfaces></configuration></filter></get-config></rpc>]]>]]>
* filter xpath + select:
<rpc><get-config><source><candidate/></source><filter type="xpath" select="/interfaces/interface/ipv4"/></get-config></rpc>]]>]]>

View file

@ -0,0 +1,457 @@
module ietf-inet-types {
namespace "urn:ietf:params:xml:ns:yang:ietf-inet-types";
prefix "inet";
organization
"IETF NETMOD (NETCONF Data Modeling Language) Working Group";
contact
"WG Web: <http://tools.ietf.org/wg/netmod/>
WG List: <mailto:netmod@ietf.org>
WG Chair: David Kessens
<mailto:david.kessens@nsn.com>
WG Chair: Juergen Schoenwaelder
<mailto:j.schoenwaelder@jacobs-university.de>
Editor: Juergen Schoenwaelder
<mailto:j.schoenwaelder@jacobs-university.de>";
description
"This module contains a collection of generally useful derived
YANG data types for Internet addresses and related things.
Copyright (c) 2013 IETF Trust and the persons identified as
authors of the code. All rights reserved.
Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject
to the license terms contained in, the Simplified BSD License
set forth in Section 4.c of the IETF Trust's Legal Provisions
Relating to IETF Documents
(http://trustee.ietf.org/license-info).
This version of this YANG module is part of RFC 6991; see
the RFC itself for full legal notices.";
revision 2013-07-15 {
description
"This revision adds the following new data types:
- ip-address-no-zone
- ipv4-address-no-zone
- ipv6-address-no-zone";
reference
"RFC 6991: Common YANG Data Types";
}
revision 2010-09-24 {
description
"Initial revision.";
reference
"RFC 6021: Common YANG Data Types";
}
/*** collection of types related to protocol fields ***/
typedef ip-version {
type enumeration {
enum unknown {
value "0";
description
"An unknown or unspecified version of the Internet
protocol.";
}
enum ipv4 {
value "1";
description
"The IPv4 protocol as defined in RFC 791.";
}
enum ipv6 {
value "2";
description
"The IPv6 protocol as defined in RFC 2460.";
}
}
description
"This value represents the version of the IP protocol.
In the value set and its semantics, this type is equivalent
to the InetVersion textual convention of the SMIv2.";
reference
"RFC 791: Internet Protocol
RFC 2460: Internet Protocol, Version 6 (IPv6) Specification
RFC 4001: Textual Conventions for Internet Network Addresses";
}
typedef dscp {
type uint8 {
range "0..63";
}
description
"The dscp type represents a Differentiated Services Code Point
that may be used for marking packets in a traffic stream.
In the value set and its semantics, this type is equivalent
to the Dscp textual convention of the SMIv2.";
reference
"RFC 3289: Management Information Base for the Differentiated
Services Architecture
RFC 2474: Definition of the Differentiated Services Field
(DS Field) in the IPv4 and IPv6 Headers
RFC 2780: IANA Allocation Guidelines For Values In
the Internet Protocol and Related Headers";
}
typedef ipv6-flow-label {
type uint32 {
range "0..1048575";
}
description
"The ipv6-flow-label type represents the flow identifier or Flow
Label in an IPv6 packet header that may be used to
discriminate traffic flows.
In the value set and its semantics, this type is equivalent
to the IPv6FlowLabel textual convention of the SMIv2.";
reference
"RFC 3595: Textual Conventions for IPv6 Flow Label
RFC 2460: Internet Protocol, Version 6 (IPv6) Specification";
}
typedef port-number {
type uint16 {
range "0..65535";
}
description
"The port-number type represents a 16-bit port number of an
Internet transport-layer protocol such as UDP, TCP, DCCP, or
SCTP. Port numbers are assigned by IANA. A current list of
all assignments is available from <http://www.iana.org/>.
Note that the port number value zero is reserved by IANA. In
situations where the value zero does not make sense, it can
be excluded by subtyping the port-number type.
In the value set and its semantics, this type is equivalent
to the InetPortNumber textual convention of the SMIv2.";
reference
"RFC 768: User Datagram Protocol
RFC 793: Transmission Control Protocol
RFC 4960: Stream Control Transmission Protocol
RFC 4340: Datagram Congestion Control Protocol (DCCP)
RFC 4001: Textual Conventions for Internet Network Addresses";
}
/*** collection of types related to autonomous systems ***/
typedef as-number {
type uint32;
description
"The as-number type represents autonomous system numbers
which identify an Autonomous System (AS). An AS is a set
of routers under a single technical administration, using
an interior gateway protocol and common metrics to route
packets within the AS, and using an exterior gateway
protocol to route packets to other ASes. IANA maintains
the AS number space and has delegated large parts to the
regional registries.
Autonomous system numbers were originally limited to 16
bits. BGP extensions have enlarged the autonomous system
number space to 32 bits. This type therefore uses an uint32
base type without a range restriction in order to support
a larger autonomous system number space.
In the value set and its semantics, this type is equivalent
to the InetAutonomousSystemNumber textual convention of
the SMIv2.";
reference
"RFC 1930: Guidelines for creation, selection, and registration
of an Autonomous System (AS)
RFC 4271: A Border Gateway Protocol 4 (BGP-4)
RFC 4001: Textual Conventions for Internet Network Addresses
RFC 6793: BGP Support for Four-Octet Autonomous System (AS)
Number Space";
}
/*** collection of types related to IP addresses and hostnames ***/
typedef ip-address {
type union {
type inet:ipv4-address;
type inet:ipv6-address;
}
description
"The ip-address type represents an IP address and is IP
version neutral. The format of the textual representation
implies the IP version. This type supports scoped addresses
by allowing zone identifiers in the address format.";
reference
"RFC 4007: IPv6 Scoped Address Architecture";
}
typedef ipv4-address {
type string {
pattern
'(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\.){3}'
+ '([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])'
+ '(%[\p{N}\p{L}]+)?';
}
description
"The ipv4-address type represents an IPv4 address in
dotted-quad notation. The IPv4 address may include a zone
index, separated by a % sign.
The zone index is used to disambiguate identical address
values. For link-local addresses, the zone index will
typically be the interface index number or the name of an
interface. If the zone index is not present, the default
zone of the device will be used.
The canonical format for the zone index is the numerical
format";
}
typedef ipv6-address {
type string {
pattern '((:|[0-9a-fA-F]{0,4}):)([0-9a-fA-F]{0,4}:){0,5}'
+ '((([0-9a-fA-F]{0,4}:)?(:|[0-9a-fA-F]{0,4}))|'
+ '(((25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])\.){3}'
+ '(25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])))'
+ '(%[\p{N}\p{L}]+)?';
pattern '(([^:]+:){6}(([^:]+:[^:]+)|(.*\..*)))|'
+ '((([^:]+:)*[^:]+)?::(([^:]+:)*[^:]+)?)'
+ '(%.+)?';
}
description
"The ipv6-address type represents an IPv6 address in full,
mixed, shortened, and shortened-mixed notation. The IPv6
address may include a zone index, separated by a % sign.
The zone index is used to disambiguate identical address
values. For link-local addresses, the zone index will
typically be the interface index number or the name of an
interface. If the zone index is not present, the default
zone of the device will be used.
The canonical format of IPv6 addresses uses the textual
representation defined in Section 4 of RFC 5952. The
canonical format for the zone index is the numerical
format as described in Section 11.2 of RFC 4007.";
reference
"RFC 4291: IP Version 6 Addressing Architecture
RFC 4007: IPv6 Scoped Address Architecture
RFC 5952: A Recommendation for IPv6 Address Text
Representation";
}
typedef ip-address-no-zone {
type union {
type inet:ipv4-address-no-zone;
type inet:ipv6-address-no-zone;
}
description
"The ip-address-no-zone type represents an IP address and is
IP version neutral. The format of the textual representation
implies the IP version. This type does not support scoped
addresses since it does not allow zone identifiers in the
address format.";
reference
"RFC 4007: IPv6 Scoped Address Architecture";
}
typedef ipv4-address-no-zone {
type inet:ipv4-address {
pattern '[0-9\.]*';
}
description
"An IPv4 address without a zone index. This type, derived from
ipv4-address, may be used in situations where the zone is
known from the context and hence no zone index is needed.";
}
typedef ipv6-address-no-zone {
type inet:ipv6-address {
pattern '[0-9a-fA-F:\.]*';
}
description
"An IPv6 address without a zone index. This type, derived from
ipv6-address, may be used in situations where the zone is
known from the context and hence no zone index is needed.";
reference
"RFC 4291: IP Version 6 Addressing Architecture
RFC 4007: IPv6 Scoped Address Architecture
RFC 5952: A Recommendation for IPv6 Address Text
Representation";
}
typedef ip-prefix {
type union {
type inet:ipv4-prefix;
type inet:ipv6-prefix;
}
description
"The ip-prefix type represents an IP prefix and is IP
version neutral. The format of the textual representations
implies the IP version.";
}
typedef ipv4-prefix {
type string {
pattern
'(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\.){3}'
+ '([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])'
+ '/(([0-9])|([1-2][0-9])|(3[0-2]))';
}
description
"The ipv4-prefix type represents an IPv4 address prefix.
The prefix length is given by the number following the
slash character and must be less than or equal to 32.
A prefix length value of n corresponds to an IP address
mask that has n contiguous 1-bits from the most
significant bit (MSB) and all other bits set to 0.
The canonical format of an IPv4 prefix has all bits of
the IPv4 address set to zero that are not part of the
IPv4 prefix.";
}
typedef ipv6-prefix {
type string {
pattern '((:|[0-9a-fA-F]{0,4}):)([0-9a-fA-F]{0,4}:){0,5}'
+ '((([0-9a-fA-F]{0,4}:)?(:|[0-9a-fA-F]{0,4}))|'
+ '(((25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])\.){3}'
+ '(25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])))'
+ '(/(([0-9])|([0-9]{2})|(1[0-1][0-9])|(12[0-8])))';
pattern '(([^:]+:){6}(([^:]+:[^:]+)|(.*\..*)))|'
+ '((([^:]+:)*[^:]+)?::(([^:]+:)*[^:]+)?)'
+ '(/.+)';
}
description
"The ipv6-prefix type represents an IPv6 address prefix.
The prefix length is given by the number following the
slash character and must be less than or equal to 128.
A prefix length value of n corresponds to an IP address
mask that has n contiguous 1-bits from the most
significant bit (MSB) and all other bits set to 0.
The IPv6 address should have all bits that do not belong
to the prefix set to zero.
The canonical format of an IPv6 prefix has all bits of
the IPv6 address set to zero that are not part of the
IPv6 prefix. Furthermore, the IPv6 address is represented
as defined in Section 4 of RFC 5952.";
reference
"RFC 5952: A Recommendation for IPv6 Address Text
Representation";
}
/*** collection of domain name and URI types ***/
typedef domain-name {
type string {
pattern
'((([a-zA-Z0-9_]([a-zA-Z0-9\-_]){0,61})?[a-zA-Z0-9]\.)*'
+ '([a-zA-Z0-9_]([a-zA-Z0-9\-_]){0,61})?[a-zA-Z0-9]\.?)'
+ '|\.';
length "1..253";
}
description
"The domain-name type represents a DNS domain name. The
name SHOULD be fully qualified whenever possible.
Internet domain names are only loosely specified. Section
3.5 of RFC 1034 recommends a syntax (modified in Section
2.1 of RFC 1123). The pattern above is intended to allow
for current practice in domain name use, and some possible
future expansion. It is designed to hold various types of
domain names, including names used for A or AAAA records
(host names) and other records, such as SRV records. Note
that Internet host names have a stricter syntax (described
in RFC 952) than the DNS recommendations in RFCs 1034 and
1123, and that systems that want to store host names in
schema nodes using the domain-name type are recommended to
adhere to this stricter standard to ensure interoperability.
The encoding of DNS names in the DNS protocol is limited
to 255 characters. Since the encoding consists of labels
prefixed by a length bytes and there is a trailing NULL
byte, only 253 characters can appear in the textual dotted
notation.
The description clause of schema nodes using the domain-name
type MUST describe when and how these names are resolved to
IP addresses. Note that the resolution of a domain-name value
may require to query multiple DNS records (e.g., A for IPv4
and AAAA for IPv6). The order of the resolution process and
which DNS record takes precedence can either be defined
explicitly or may depend on the configuration of the
resolver.
Domain-name values use the US-ASCII encoding. Their canonical
format uses lowercase US-ASCII characters. Internationalized
domain names MUST be A-labels as per RFC 5890.";
reference
"RFC 952: DoD Internet Host Table Specification
RFC 1034: Domain Names - Concepts and Facilities
RFC 1123: Requirements for Internet Hosts -- Application
and Support
RFC 2782: A DNS RR for specifying the location of services
(DNS SRV)
RFC 5890: Internationalized Domain Names in Applications
(IDNA): Definitions and Document Framework";
}
typedef host {
type union {
type inet:ip-address;
type inet:domain-name;
}
description
"The host type represents either an IP address or a DNS
domain name.";
}
typedef uri {
type string;
description
"The uri type represents a Uniform Resource Identifier
(URI) as defined by STD 66.
Objects using the uri type MUST be in US-ASCII encoding,
and MUST be normalized as described by RFC 3986 Sections
6.2.1, 6.2.2.1, and 6.2.2.2. All unnecessary
percent-encoding is removed, and all case-insensitive
characters are set to lowercase except for hexadecimal
digits, which are normalized to uppercase as described in
Section 6.2.2.1.
The purpose of this normalization is to help provide
unique URIs. Note that this normalization is not
sufficient to provide uniqueness. Two URIs that are
textually distinct after this normalization may still be
equivalent.
Objects using the uri type may restrict the schemes that
they permit. For example, 'data:' and 'urn:' schemes
might not be appropriate.
A zero-length URI is not a valid URI. This can be used to
express 'URI absent' where required.
In the value set and its semantics, this type is equivalent
to the Uri SMIv2 textual convention defined in RFC 5017.";
reference
"RFC 3986: Uniform Resource Identifier (URI): Generic Syntax
RFC 3305: Report from the Joint W3C/IETF URI Planning Interest
Group: Uniform Resource Identifiers (URIs), URLs,
and Uniform Resource Names (URNs): Clarifications
and Recommendations
RFC 5017: MIB Textual Conventions for Uniform Resource
Identifiers (URIs)";
}
}

View file

@ -0,0 +1,698 @@
module ietf-interfaces {
namespace "urn:ietf:params:xml:ns:yang:ietf-interfaces";
prefix if;
import ietf-yang-types {
prefix yang;
}
organization
"IETF NETMOD (NETCONF Data Modeling Language) Working Group";
contact
"WG Web: <http://tools.ietf.org/wg/netmod/>
WG List: <mailto:netmod@ietf.org>
WG Chair: Thomas Nadeau
<mailto:tnadeau@lucidvision.com>
WG Chair: Juergen Schoenwaelder
<mailto:j.schoenwaelder@jacobs-university.de>
Editor: Martin Bjorklund
<mailto:mbj@tail-f.com>";
description
"This module contains a collection of YANG definitions for
managing network interfaces.
Copyright (c) 2014 IETF Trust and the persons identified as
authors of the code. All rights reserved.
Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject
to the license terms contained in, the Simplified BSD License
set forth in Section 4.c of the IETF Trust's Legal Provisions
Relating to IETF Documents
(http://trustee.ietf.org/license-info).
This version of this YANG module is part of RFC 7223; see
the RFC itself for full legal notices.";
revision 2014-05-08 {
description
"Initial revision.";
reference
"RFC 7223: A YANG Data Model for Interface Management";
}
/*
* Typedefs
*/
typedef interface-ref {
type leafref {
path "/if:interfaces/if:interface/if:name";
}
description
"This type is used by data models that need to reference
configured interfaces.";
}
typedef interface-state-ref {
type leafref {
path "/if:interfaces-state/if:interface/if:name";
}
description
"This type is used by data models that need to reference
the operationally present interfaces.";
}
/*
* Identities
*/
identity interface-type {
description
"Base identity from which specific interface types are
derived.";
}
/*
* Features
*/
feature arbitrary-names {
description
"This feature indicates that the device allows user-controlled
interfaces to be named arbitrarily.";
}
feature pre-provisioning {
description
"This feature indicates that the device supports
pre-provisioning of interface configuration, i.e., it is
possible to configure an interface whose physical interface
hardware is not present on the device.";
}
feature if-mib {
description
"This feature indicates that the device implements
the IF-MIB.";
reference
"RFC 2863: The Interfaces Group MIB";
}
/*
* Configuration data nodes
*/
container interfaces {
description
"Interface configuration parameters.";
list interface {
key "name";
description
"The list of configured interfaces on the device.
The operational state of an interface is available in the
/interfaces-state/interface list. If the configuration of a
system-controlled interface cannot be used by the system
(e.g., the interface hardware present does not match the
interface type), then the configuration is not applied to
the system-controlled interface shown in the
/interfaces-state/interface list. If the configuration
of a user-controlled interface cannot be used by the system,
the configured interface is not instantiated in the
/interfaces-state/interface list.";
leaf name {
type string;
description
"The name of the interface.
A device MAY restrict the allowed values for this leaf,
possibly depending on the type of the interface.
For system-controlled interfaces, this leaf is the
device-specific name of the interface. The 'config false'
list /interfaces-state/interface contains the currently
existing interfaces on the device.
If a client tries to create configuration for a
system-controlled interface that is not present in the
/interfaces-state/interface list, the server MAY reject
the request if the implementation does not support
pre-provisioning of interfaces or if the name refers to
an interface that can never exist in the system. A
NETCONF server MUST reply with an rpc-error with the
error-tag 'invalid-value' in this case.
If the device supports pre-provisioning of interface
configuration, the 'pre-provisioning' feature is
advertised.
If the device allows arbitrarily named user-controlled
interfaces, the 'arbitrary-names' feature is advertised.
When a configured user-controlled interface is created by
the system, it is instantiated with the same name in the
/interface-state/interface list.";
}
leaf description {
type string;
description
"A textual description of the interface.
A server implementation MAY map this leaf to the ifAlias
MIB object. Such an implementation needs to use some
mechanism to handle the differences in size and characters
allowed between this leaf and ifAlias. The definition of
such a mechanism is outside the scope of this document.
Since ifAlias is defined to be stored in non-volatile
storage, the MIB implementation MUST map ifAlias to the
value of 'description' in the persistently stored
datastore.
Specifically, if the device supports ':startup', when
ifAlias is read the device MUST return the value of
'description' in the 'startup' datastore, and when it is
written, it MUST be written to the 'running' and 'startup'
datastores. Note that it is up to the implementation to
decide whether to modify this single leaf in 'startup' or
perform an implicit copy-config from 'running' to
'startup'.
If the device does not support ':startup', ifAlias MUST
be mapped to the 'description' leaf in the 'running'
datastore.";
reference
"RFC 2863: The Interfaces Group MIB - ifAlias";
}
leaf type {
type identityref {
base interface-type;
}
mandatory true;
description
"The type of the interface.
When an interface entry is created, a server MAY
initialize the type leaf with a valid value, e.g., if it
is possible to derive the type from the name of the
interface.
If a client tries to set the type of an interface to a
value that can never be used by the system, e.g., if the
type is not supported or if the type does not match the
name of the interface, the server MUST reject the request.
A NETCONF server MUST reply with an rpc-error with the
error-tag 'invalid-value' in this case.";
reference
"RFC 2863: The Interfaces Group MIB - ifType";
}
leaf enabled {
type boolean;
default "true";
description
"This leaf contains the configured, desired state of the
interface.
Systems that implement the IF-MIB use the value of this
leaf in the 'running' datastore to set
IF-MIB.ifAdminStatus to 'up' or 'down' after an ifEntry
has been initialized, as described in RFC 2863.
Changes in this leaf in the 'running' datastore are
reflected in ifAdminStatus, but if ifAdminStatus is
changed over SNMP, this leaf is not affected.";
reference
"RFC 2863: The Interfaces Group MIB - ifAdminStatus";
}
leaf link-up-down-trap-enable {
if-feature if-mib;
type enumeration {
enum enabled {
value 1;
}
enum disabled {
value 2;
}
}
description
"Controls whether linkUp/linkDown SNMP notifications
should be generated for this interface.
If this node is not configured, the value 'enabled' is
operationally used by the server for interfaces that do
not operate on top of any other interface (i.e., there are
no 'lower-layer-if' entries), and 'disabled' otherwise.";
reference
"RFC 2863: The Interfaces Group MIB -
ifLinkUpDownTrapEnable";
}
}
}
/*
* Operational state data nodes
*/
container interfaces-state {
config false;
description
"Data nodes for the operational state of interfaces.";
list interface {
key "name";
description
"The list of interfaces on the device.
System-controlled interfaces created by the system are
always present in this list, whether they are configured or
not.";
leaf name {
type string;
description
"The name of the interface.
A server implementation MAY map this leaf to the ifName
MIB object. Such an implementation needs to use some
mechanism to handle the differences in size and characters
allowed between this leaf and ifName. The definition of
such a mechanism is outside the scope of this document.";
reference
"RFC 2863: The Interfaces Group MIB - ifName";
}
leaf type {
type identityref {
base interface-type;
}
mandatory true;
description
"The type of the interface.";
reference
"RFC 2863: The Interfaces Group MIB - ifType";
}
leaf admin-status {
if-feature if-mib;
type enumeration {
enum up {
value 1;
description
"Ready to pass packets.";
}
enum down {
value 2;
description
"Not ready to pass packets and not in some test mode.";
}
enum testing {
value 3;
description
"In some test mode.";
}
}
mandatory true;
description
"The desired state of the interface.
This leaf has the same read semantics as ifAdminStatus.";
reference
"RFC 2863: The Interfaces Group MIB - ifAdminStatus";
}
leaf oper-status {
type enumeration {
enum up {
value 1;
description
"Ready to pass packets.";
}
enum down {
value 2;
description
"The interface does not pass any packets.";
}
enum testing {
value 3;
description
"In some test mode. No operational packets can
be passed.";
}
enum unknown {
value 4;
description
"Status cannot be determined for some reason.";
}
enum dormant {
value 5;
description
"Waiting for some external event.";
}
enum not-present {
value 6;
description
"Some component (typically hardware) is missing.";
}
enum lower-layer-down {
value 7;
description
"Down due to state of lower-layer interface(s).";
}
}
mandatory true;
description
"The current operational state of the interface.
This leaf has the same semantics as ifOperStatus.";
reference
"RFC 2863: The Interfaces Group MIB - ifOperStatus";
}
leaf last-change {
type yang:date-and-time;
description
"The time the interface entered its current operational
state. If the current state was entered prior to the
last re-initialization of the local network management
subsystem, then this node is not present.";
reference
"RFC 2863: The Interfaces Group MIB - ifLastChange";
}
leaf if-index {
if-feature if-mib;
type int32 {
range "1..2147483647";
}
mandatory true;
description
"The ifIndex value for the ifEntry represented by this
interface.";
reference
"RFC 2863: The Interfaces Group MIB - ifIndex";
}
leaf phys-address {
type yang:phys-address;
description
"The interface's address at its protocol sub-layer. For
example, for an 802.x interface, this object normally
contains a Media Access Control (MAC) address. The
interface's media-specific modules must define the bit
and byte ordering and the format of the value of this
object. For interfaces that do not have such an address
(e.g., a serial line), this node is not present.";
reference
"RFC 2863: The Interfaces Group MIB - ifPhysAddress";
}
leaf-list higher-layer-if {
type interface-state-ref;
description
"A list of references to interfaces layered on top of this
interface.";
reference
"RFC 2863: The Interfaces Group MIB - ifStackTable";
}
leaf-list lower-layer-if {
type interface-state-ref;
description
"A list of references to interfaces layered underneath this
interface.";
reference
"RFC 2863: The Interfaces Group MIB - ifStackTable";
}
leaf speed {
type yang:gauge64;
units "bits/second";
description
"An estimate of the interface's current bandwidth in bits
per second. For interfaces that do not vary in
bandwidth or for those where no accurate estimation can
be made, this node should contain the nominal bandwidth.
For interfaces that have no concept of bandwidth, this
node is not present.";
reference
"RFC 2863: The Interfaces Group MIB -
ifSpeed, ifHighSpeed";
}
container statistics {
description
"A collection of interface-related statistics objects.";
leaf discontinuity-time {
type yang:date-and-time;
mandatory true;
description
"The time on the most recent occasion at which any one or
more of this interface's counters suffered a
discontinuity. If no such discontinuities have occurred
since the last re-initialization of the local management
subsystem, then this node contains the time the local
management subsystem re-initialized itself.";
}
leaf in-octets {
type yang:counter64;
description
"The total number of octets received on the interface,
including framing characters.
Discontinuities in the value of this counter can occur
at re-initialization of the management system, and at
other times as indicated by the value of
'discontinuity-time'.";
reference
"RFC 2863: The Interfaces Group MIB - ifHCInOctets";
}
leaf in-unicast-pkts {
type yang:counter64;
description
"The number of packets, delivered by this sub-layer to a
higher (sub-)layer, that were not addressed to a
multicast or broadcast address at this sub-layer.
Discontinuities in the value of this counter can occur
at re-initialization of the management system, and at
other times as indicated by the value of
'discontinuity-time'.";
reference
"RFC 2863: The Interfaces Group MIB - ifHCInUcastPkts";
}
leaf in-broadcast-pkts {
type yang:counter64;
description
"The number of packets, delivered by this sub-layer to a
higher (sub-)layer, that were addressed to a broadcast
address at this sub-layer.
Discontinuities in the value of this counter can occur
at re-initialization of the management system, and at
other times as indicated by the value of
'discontinuity-time'.";
reference
"RFC 2863: The Interfaces Group MIB -
ifHCInBroadcastPkts";
}
leaf in-multicast-pkts {
type yang:counter64;
description
"The number of packets, delivered by this sub-layer to a
higher (sub-)layer, that were addressed to a multicast
address at this sub-layer. For a MAC-layer protocol,
this includes both Group and Functional addresses.
Discontinuities in the value of this counter can occur
at re-initialization of the management system, and at
other times as indicated by the value of
'discontinuity-time'.";
reference
"RFC 2863: The Interfaces Group MIB -
ifHCInMulticastPkts";
}
leaf in-discards {
type yang:counter32;
description
"The number of inbound packets that were chosen to be
discarded even though no errors had been detected to
prevent their being deliverable to a higher-layer
protocol. One possible reason for discarding such a
packet could be to free up buffer space.
Discontinuities in the value of this counter can occur
at re-initialization of the management system, and at
other times as indicated by the value of
'discontinuity-time'.";
reference
"RFC 2863: The Interfaces Group MIB - ifInDiscards";
}
leaf in-errors {
type yang:counter32;
description
"For packet-oriented interfaces, the number of inbound
packets that contained errors preventing them from being
deliverable to a higher-layer protocol. For character-
oriented or fixed-length interfaces, the number of
inbound transmission units that contained errors
preventing them from being deliverable to a higher-layer
protocol.
Discontinuities in the value of this counter can occur
at re-initialization of the management system, and at
other times as indicated by the value of
'discontinuity-time'.";
reference
"RFC 2863: The Interfaces Group MIB - ifInErrors";
}
leaf in-unknown-protos {
type yang:counter32;
description
"For packet-oriented interfaces, the number of packets
received via the interface that were discarded because
of an unknown or unsupported protocol. For
character-oriented or fixed-length interfaces that
support protocol multiplexing, the number of
transmission units received via the interface that were
discarded because of an unknown or unsupported protocol.
For any interface that does not support protocol
multiplexing, this counter is not present.
Discontinuities in the value of this counter can occur
at re-initialization of the management system, and at
other times as indicated by the value of
'discontinuity-time'.";
reference
"RFC 2863: The Interfaces Group MIB - ifInUnknownProtos";
}
leaf out-octets {
type yang:counter64;
description
"The total number of octets transmitted out of the
interface, including framing characters.
Discontinuities in the value of this counter can occur
at re-initialization of the management system, and at
other times as indicated by the value of
'discontinuity-time'.";
reference
"RFC 2863: The Interfaces Group MIB - ifHCOutOctets";
}
leaf out-unicast-pkts {
type yang:counter64;
description
"The total number of packets that higher-level protocols
requested be transmitted, and that were not addressed
to a multicast or broadcast address at this sub-layer,
including those that were discarded or not sent.
Discontinuities in the value of this counter can occur
at re-initialization of the management system, and at
other times as indicated by the value of
'discontinuity-time'.";
reference
"RFC 2863: The Interfaces Group MIB - ifHCOutUcastPkts";
}
leaf out-broadcast-pkts {
type yang:counter64;
description
"The total number of packets that higher-level protocols
requested be transmitted, and that were addressed to a
broadcast address at this sub-layer, including those
that were discarded or not sent.
Discontinuities in the value of this counter can occur
at re-initialization of the management system, and at
other times as indicated by the value of
'discontinuity-time'.";
reference
"RFC 2863: The Interfaces Group MIB -
ifHCOutBroadcastPkts";
}
leaf out-multicast-pkts {
type yang:counter64;
description
"The total number of packets that higher-level protocols
requested be transmitted, and that were addressed to a
multicast address at this sub-layer, including those
that were discarded or not sent. For a MAC-layer
protocol, this includes both Group and Functional
addresses.
Discontinuities in the value of this counter can occur
at re-initialization of the management system, and at
other times as indicated by the value of
'discontinuity-time'.";
reference
"RFC 2863: The Interfaces Group MIB -
ifHCOutMulticastPkts";
}
leaf out-discards {
type yang:counter32;
description
"The number of outbound packets that were chosen to be
discarded even though no errors had been detected to
prevent their being transmitted. One possible reason
for discarding such a packet could be to free up buffer
space.
Discontinuities in the value of this counter can occur
at re-initialization of the management system, and at
other times as indicated by the value of
'discontinuity-time'.";
reference
"RFC 2863: The Interfaces Group MIB - ifOutDiscards";
}
leaf out-errors {
type yang:counter32;
description
"For packet-oriented interfaces, the number of outbound
packets that could not be transmitted because of errors.
For character-oriented or fixed-length interfaces, the
number of outbound transmission units that could not be
transmitted because of errors.
Discontinuities in the value of this counter can occur
at re-initialization of the management system, and at
other times as indicated by the value of
'discontinuity-time'.";
reference
"RFC 2863: The Interfaces Group MIB - ifOutErrors";
}
}
}
}
}

View file

@ -0,0 +1,701 @@
module ietf-ip {
namespace "urn:ietf:params:xml:ns:yang:ietf-ip";
prefix ip;
import ietf-interfaces {
prefix if;
}
import ietf-inet-types {
prefix inet;
}
import ietf-yang-types {
prefix yang;
}
organization
"IETF NETMOD (NETCONF Data Modeling Language) Working Group";
contact
"WG Web: <http://tools.ietf.org/wg/netmod/>
WG List: <mailto:netmod@ietf.org>
WG Chair: Thomas Nadeau
<mailto:tnadeau@lucidvision.com>
WG Chair: Juergen Schoenwaelder
<mailto:j.schoenwaelder@jacobs-university.de>
Editor: Martin Bjorklund
<mailto:mbj@tail-f.com>";
description
"This module contains a collection of YANG definitions for
configuring IP implementations.
Copyright (c) 2014 IETF Trust and the persons identified as
authors of the code. All rights reserved.
Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject
to the license terms contained in, the Simplified BSD License
set forth in Section 4.c of the IETF Trust's Legal Provisions
Relating to IETF Documents
(http://trustee.ietf.org/license-info).
This version of this YANG module is part of RFC 7277; see
the RFC itself for full legal notices.";
revision 2014-06-16 {
description
"Initial revision.";
reference
"RFC 7277: A YANG Data Model for IP Management";
}
/*
* Features
*/
feature ipv4-non-contiguous-netmasks {
description
"Indicates support for configuring non-contiguous
subnet masks.";
}
feature ipv6-privacy-autoconf {
description
"Indicates support for Privacy Extensions for Stateless Address
Autoconfiguration in IPv6.";
reference
"RFC 4941: Privacy Extensions for Stateless Address
Autoconfiguration in IPv6";
}
/*
* Typedefs
*/
typedef ip-address-origin {
type enumeration {
enum other {
description
"None of the following.";
}
enum static {
description
"Indicates that the address has been statically
configured - for example, using NETCONF or a Command Line
Interface.";
}
enum dhcp {
description
"Indicates an address that has been assigned to this
system by a DHCP server.";
}
enum link-layer {
description
"Indicates an address created by IPv6 stateless
autoconfiguration that embeds a link-layer address in its
interface identifier.";
}
enum random {
description
"Indicates an address chosen by the system at
random, e.g., an IPv4 address within 169.254/16, an
RFC 4941 temporary address, or an RFC 7217 semantically
opaque address.";
reference
"RFC 4941: Privacy Extensions for Stateless Address
Autoconfiguration in IPv6
RFC 7217: A Method for Generating Semantically Opaque
Interface Identifiers with IPv6 Stateless
Address Autoconfiguration (SLAAC)";
}
}
description
"The origin of an address.";
}
typedef neighbor-origin {
type enumeration {
enum other {
description
"None of the following.";
}
enum static {
description
"Indicates that the mapping has been statically
configured - for example, using NETCONF or a Command Line
Interface.";
}
enum dynamic {
description
"Indicates that the mapping has been dynamically resolved
using, e.g., IPv4 ARP or the IPv6 Neighbor Discovery
protocol.";
}
}
description
"The origin of a neighbor entry.";
}
/*
* Configuration data nodes
*/
augment "/if:interfaces/if:interface" {
description
"Parameters for configuring IP on interfaces.
If an interface is not capable of running IP, the server
must not allow the client to configure these parameters.";
container ipv4 {
presence
"Enables IPv4 unless the 'enabled' leaf
(which defaults to 'true') is set to 'false'";
description
"Parameters for the IPv4 address family.";
leaf enabled {
type boolean;
default true;
description
"Controls whether IPv4 is enabled or disabled on this
interface. When IPv4 is enabled, this interface is
connected to an IPv4 stack, and the interface can send
and receive IPv4 packets.";
}
leaf forwarding {
type boolean;
default false;
description
"Controls IPv4 packet forwarding of datagrams received by,
but not addressed to, this interface. IPv4 routers
forward datagrams. IPv4 hosts do not (except those
source-routed via the host).";
}
leaf mtu {
type uint16 {
range "68..max";
}
units octets;
description
"The size, in octets, of the largest IPv4 packet that the
interface will send and receive.
The server may restrict the allowed values for this leaf,
depending on the interface's type.
If this leaf is not configured, the operationally used MTU
depends on the interface's type.";
reference
"RFC 791: Internet Protocol";
}
list address {
key "ip";
description
"The list of configured IPv4 addresses on the interface.";
leaf ip {
type inet:ipv4-address-no-zone;
description
"The IPv4 address on the interface.";
}
choice subnet {
mandatory true;
description
"The subnet can be specified as a prefix-length, or,
if the server supports non-contiguous netmasks, as
a netmask.";
leaf prefix-length {
type uint8 {
range "0..32";
}
description
"The length of the subnet prefix.";
}
leaf netmask {
if-feature ipv4-non-contiguous-netmasks;
type yang:dotted-quad;
description
"The subnet specified as a netmask.";
}
}
}
list neighbor {
key "ip";
description
"A list of mappings from IPv4 addresses to
link-layer addresses.
Entries in this list are used as static entries in the
ARP Cache.";
reference
"RFC 826: An Ethernet Address Resolution Protocol";
leaf ip {
type inet:ipv4-address-no-zone;
description
"The IPv4 address of the neighbor node.";
}
leaf link-layer-address {
type yang:phys-address;
mandatory true;
description
"The link-layer address of the neighbor node.";
}
}
}
container ipv6 {
presence
"Enables IPv6 unless the 'enabled' leaf
(which defaults to 'true') is set to 'false'";
description
"Parameters for the IPv6 address family.";
leaf enabled {
type boolean;
default true;
description
"Controls whether IPv6 is enabled or disabled on this
interface. When IPv6 is enabled, this interface is
connected to an IPv6 stack, and the interface can send
and receive IPv6 packets.";
}
leaf forwarding {
type boolean;
default false;
description
"Controls IPv6 packet forwarding of datagrams received by,
but not addressed to, this interface. IPv6 routers
forward datagrams. IPv6 hosts do not (except those
source-routed via the host).";
reference
"RFC 4861: Neighbor Discovery for IP version 6 (IPv6)
Section 6.2.1, IsRouter";
}
leaf mtu {
type uint32 {
range "1280..max";
}
units octets;
description
"The size, in octets, of the largest IPv6 packet that the
interface will send and receive.
The server may restrict the allowed values for this leaf,
depending on the interface's type.
If this leaf is not configured, the operationally used MTU
depends on the interface's type.";
reference
"RFC 2460: Internet Protocol, Version 6 (IPv6) Specification
Section 5";
}
list address {
key "ip";
description
"The list of configured IPv6 addresses on the interface.";
leaf ip {
type inet:ipv6-address-no-zone;
description
"The IPv6 address on the interface.";
}
leaf prefix-length {
type uint8 {
range "0..128";
}
mandatory true;
description
"The length of the subnet prefix.";
}
}
list neighbor {
key "ip";
description
"A list of mappings from IPv6 addresses to
link-layer addresses.
Entries in this list are used as static entries in the
Neighbor Cache.";
reference
"RFC 4861: Neighbor Discovery for IP version 6 (IPv6)";
leaf ip {
type inet:ipv6-address-no-zone;
description
"The IPv6 address of the neighbor node.";
}
leaf link-layer-address {
type yang:phys-address;
mandatory true;
description
"The link-layer address of the neighbor node.";
}
}
leaf dup-addr-detect-transmits {
type uint32;
default 1;
description
"The number of consecutive Neighbor Solicitation messages
sent while performing Duplicate Address Detection on a
tentative address. A value of zero indicates that
Duplicate Address Detection is not performed on
tentative addresses. A value of one indicates a single
transmission with no follow-up retransmissions.";
reference
"RFC 4862: IPv6 Stateless Address Autoconfiguration";
}
container autoconf {
description
"Parameters to control the autoconfiguration of IPv6
addresses, as described in RFC 4862.";
reference
"RFC 4862: IPv6 Stateless Address Autoconfiguration";
leaf create-global-addresses {
type boolean;
default true;
description
"If enabled, the host creates global addresses as
described in RFC 4862.";
reference
"RFC 4862: IPv6 Stateless Address Autoconfiguration
Section 5.5";
}
leaf create-temporary-addresses {
if-feature ipv6-privacy-autoconf;
type boolean;
default false;
description
"If enabled, the host creates temporary addresses as
described in RFC 4941.";
reference
"RFC 4941: Privacy Extensions for Stateless Address
Autoconfiguration in IPv6";
}
leaf temporary-valid-lifetime {
if-feature ipv6-privacy-autoconf;
type uint32;
units "seconds";
default 604800;
description
"The time period during which the temporary address
is valid.";
reference
"RFC 4941: Privacy Extensions for Stateless Address
Autoconfiguration in IPv6
- TEMP_VALID_LIFETIME";
}
leaf temporary-preferred-lifetime {
if-feature ipv6-privacy-autoconf;
type uint32;
units "seconds";
default 86400;
description
"The time period during which the temporary address is
preferred.";
reference
"RFC 4941: Privacy Extensions for Stateless Address
Autoconfiguration in IPv6
- TEMP_PREFERRED_LIFETIME";
}
}
}
}
/*
* Operational state data nodes
*/
augment "/if:interfaces-state/if:interface" {
description
"Data nodes for the operational state of IP on interfaces.";
container ipv4 {
presence "Present if IPv4 is enabled on this interface";
config false;
description
"Interface-specific parameters for the IPv4 address family.";
leaf forwarding {
type boolean;
description
"Indicates whether IPv4 packet forwarding is enabled or
disabled on this interface.";
}
leaf mtu {
type uint16 {
range "68..max";
}
units octets;
description
"The size, in octets, of the largest IPv4 packet that the
interface will send and receive.";
reference
"RFC 791: Internet Protocol";
}
list address {
key "ip";
description
"The list of IPv4 addresses on the interface.";
leaf ip {
type inet:ipv4-address-no-zone;
description
"The IPv4 address on the interface.";
}
choice subnet {
description
"The subnet can be specified as a prefix-length, or,
if the server supports non-contiguous netmasks, as
a netmask.";
leaf prefix-length {
type uint8 {
range "0..32";
}
description
"The length of the subnet prefix.";
}
leaf netmask {
if-feature ipv4-non-contiguous-netmasks;
type yang:dotted-quad;
description
"The subnet specified as a netmask.";
}
}
leaf origin {
type ip-address-origin;
description
"The origin of this address.";
}
}
list neighbor {
key "ip";
description
"A list of mappings from IPv4 addresses to
link-layer addresses.
This list represents the ARP Cache.";
reference
"RFC 826: An Ethernet Address Resolution Protocol";
leaf ip {
type inet:ipv4-address-no-zone;
description
"The IPv4 address of the neighbor node.";
}
leaf link-layer-address {
type yang:phys-address;
description
"The link-layer address of the neighbor node.";
}
leaf origin {
type neighbor-origin;
description
"The origin of this neighbor entry.";
}
}
}
container ipv6 {
presence "Present if IPv6 is enabled on this interface";
config false;
description
"Parameters for the IPv6 address family.";
leaf forwarding {
type boolean;
default false;
description
"Indicates whether IPv6 packet forwarding is enabled or
disabled on this interface.";
reference
"RFC 4861: Neighbor Discovery for IP version 6 (IPv6)
Section 6.2.1, IsRouter";
}
leaf mtu {
type uint32 {
range "1280..max";
}
units octets;
description
"The size, in octets, of the largest IPv6 packet that the
interface will send and receive.";
reference
"RFC 2460: Internet Protocol, Version 6 (IPv6) Specification
Section 5";
}
list address {
key "ip";
description
"The list of IPv6 addresses on the interface.";
leaf ip {
type inet:ipv6-address-no-zone;
description
"The IPv6 address on the interface.";
}
leaf prefix-length {
type uint8 {
range "0..128";
}
mandatory true;
description
"The length of the subnet prefix.";
}
leaf origin {
type ip-address-origin;
description
"The origin of this address.";
}
leaf status {
type enumeration {
enum preferred {
description
"This is a valid address that can appear as the
destination or source address of a packet.";
}
enum deprecated {
description
"This is a valid but deprecated address that should
no longer be used as a source address in new
communications, but packets addressed to such an
address are processed as expected.";
}
enum invalid {
description
"This isn't a valid address, and it shouldn't appear
as the destination or source address of a packet.";
}
enum inaccessible {
description
"The address is not accessible because the interface
to which this address is assigned is not
operational.";
}
enum unknown {
description
"The status cannot be determined for some reason.";
}
enum tentative {
description
"The uniqueness of the address on the link is being
verified. Addresses in this state should not be
used for general communication and should only be
used to determine the uniqueness of the address.";
}
enum duplicate {
description
"The address has been determined to be non-unique on
the link and so must not be used.";
}
enum optimistic {
description
"The address is available for use, subject to
restrictions, while its uniqueness on a link is
being verified.";
}
}
description
"The status of an address. Most of the states correspond
to states from the IPv6 Stateless Address
Autoconfiguration protocol.";
reference
"RFC 4293: Management Information Base for the
Internet Protocol (IP)
- IpAddressStatusTC
RFC 4862: IPv6 Stateless Address Autoconfiguration";
}
}
list neighbor {
key "ip";
description
"A list of mappings from IPv6 addresses to
link-layer addresses.
This list represents the Neighbor Cache.";
reference
"RFC 4861: Neighbor Discovery for IP version 6 (IPv6)";
leaf ip {
type inet:ipv6-address-no-zone;
description
"The IPv6 address of the neighbor node.";
}
leaf link-layer-address {
type yang:phys-address;
description
"The link-layer address of the neighbor node.";
}
leaf origin {
type neighbor-origin;
description
"The origin of this neighbor entry.";
}
leaf is-router {
type empty;
description
"Indicates that the neighbor node acts as a router.";
}
leaf state {
type enumeration {
enum incomplete {
description
"Address resolution is in progress, and the link-layer
address of the neighbor has not yet been
determined.";
}
enum reachable {
description
"Roughly speaking, the neighbor is known to have been
reachable recently (within tens of seconds ago).";
}
enum stale {
description
"The neighbor is no longer known to be reachable, but
until traffic is sent to the neighbor no attempt
should be made to verify its reachability.";
}
enum delay {
description
"The neighbor is no longer known to be reachable, and
traffic has recently been sent to the neighbor.
Rather than probe the neighbor immediately, however,
delay sending probes for a short while in order to
give upper-layer protocols a chance to provide
reachability confirmation.";
}
enum probe {
description
"The neighbor is no longer known to be reachable, and
unicast Neighbor Solicitation probes are being sent
to verify reachability.";
}
}
description
"The Neighbor Unreachability Detection state of this
entry.";
reference
"RFC 4861: Neighbor Discovery for IP version 6 (IPv6)
Section 7.3.2";
}
}
}
}
}

View file

@ -0,0 +1,232 @@
module ietf-ipv4-unicast-routing {
namespace "urn:ietf:params:xml:ns:yang:ietf-ipv4-unicast-routing";
prefix "v4ur";
import ietf-routing {
prefix "rt";
revision-date "2014-10-26";
}
import ietf-inet-types {
prefix "inet";
revision-date "2013-07-15";
}
organization
"IETF NETMOD (NETCONF Data Modeling Language) Working Group";
contact
"WG Web: <http://tools.ietf.org/wg/netmod/>
WG List: <mailto:netmod@ietf.org>
WG Chair: Thomas Nadeau
<mailto:tnadeau@lucidvision.com>
WG Chair: Juergen Schoenwaelder
<mailto:j.schoenwaelder@jacobs-university.de>
Editor: Ladislav Lhotka
<mailto:lhotka@nic.cz>";
description
"This YANG module augments the 'ietf-routing' module with basic
configuration and operational state data for IPv4 unicast
routing.
Copyright (c) 2014 IETF Trust and the persons identified as
authors of the code. All rights reserved.
Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject to
the license terms contained in, the Simplified BSD License set
forth in Section 4.c of the IETF Trust's Legal Provisions
Relating to IETF Documents
(http://trustee.ietf.org/license-info).
This version of this YANG module is part of RFC XXXX; see the
RFC itself for full legal notices.";
revision 2014-10-26 {
description
"Initial revision.";
reference
"RFC XXXX: A YANG Data Model for Routing Management";
}
/* Identities */
identity ipv4-unicast {
base rt:ipv4;
description
"This identity represents the IPv4 unicast address family.";
}
/* Operational state data */
augment "/rt:routing-state/rt:ribs/rt:rib/rt:routes/rt:route" {
when "../../rt:address-family = 'v4ur:ipv4-unicast'" {
description
"This augment is valid only for IPv4 unicast.";
}
description
"This leaf augments an IPv4 unicast route.";
leaf destination-prefix {
type inet:ipv4-prefix;
description
"IPv4 destination prefix.";
}
}
augment "/rt:routing-state/rt:ribs/rt:rib/rt:routes/rt:route/"
+ "rt:next-hop/rt:next-hop-options/rt:simple-next-hop" {
when "../../../rt:address-family = 'v4ur:ipv4-unicast'" {
description
"This augment is valid only for IPv4 unicast.";
}
description
"This leaf augments the 'simple-next-hop' case of IPv4 unicast
routes.";
leaf next-hop-address {
type inet:ipv4-address;
description
"IPv4 address of the next-hop.";
}
}
augment "/rt:routing-state/rt:next-hop-lists/rt:next-hop-list/"
+ "rt:next-hop/rt:next-hop-options/rt:simple-next-hop" {
when "../rt:address-family = 'v4ur:ipv4-unicast'" {
description
"This augment is valid only for IPv4 unicast.";
}
description
"This leaf augments next-hop list with IPv4 next-hop address.
routes.";
leaf next-hop-address {
type inet:ipv4-address;
description
"IPv4 address of the next-hop.";
}
}
/* Configuration data */
augment "/rt:routing/rt:routing-instance/rt:routing-protocols/"
+ "rt:routing-protocol/rt:static-routes" {
description
"This augment defines the configuration of the 'static'
pseudo-protocol with data specific to IPv4 unicast.";
container ipv4 {
description
"Configuration of a 'static' pseudo-protocol instance
consists of a list of routes.";
list route {
key "destination-prefix";
ordered-by "user";
description
"A user-ordered list of static routes.";
leaf destination-prefix {
type inet:ipv4-prefix;
mandatory "true";
description
"IPv4 destination prefix.";
}
leaf description {
type string;
description
"Textual description of the route.";
}
container next-hop {
description
"Configuration of next-hop.";
grouping next-hop-content {
description
"Next-hop content for IPv4 unicast static routes.";
uses rt:next-hop-content {
augment "next-hop-options" {
description
"Add next-hop address case.";
leaf next-hop-address {
type inet:ipv4-address;
description
"IPv4 address of the next-hop.";
}
}
}
}
choice simple-or-list {
description
"Options for next-hops.";
list multipath-entry {
if-feature rt:multipath-routes;
key "name";
description
"List of alternative next-hops.";
leaf name {
type string;
description
"A unique identifier of the next-hop entry.";
}
uses next-hop-content;
uses rt:next-hop-classifiers;
}
case simple-next-hop {
uses next-hop-content;
}
}
}
}
}
}
/* RPC methods */
augment "/rt:fib-route/rt:input/rt:destination-address" {
when "rt:address-family='v4ur:ipv4-unicast'" {
description
"This augment is valid only for IPv4 unicast.";
}
description
"This leaf augments the 'rt:destination-address' parameter of
the 'rt:fib-route' operation.";
leaf address {
type inet:ipv4-address;
description
"IPv4 destination address.";
}
}
augment "/rt:fib-route/rt:output/rt:route" {
when "rt:address-family='v4ur:ipv4-unicast'" {
description
"This augment is valid only for IPv4 unicast.";
}
description
"This leaf augments the reply to the 'rt:fib-route'
operation.";
leaf destination-prefix {
type inet:ipv4-prefix;
description
"IPv4 destination prefix.";
}
}
augment "/rt:fib-route/rt:output/rt:route/rt:next-hop/"
+ "rt:next-hop-options/rt:simple-next-hop" {
when "../rt:address-family='v4ur:ipv4-unicast'" {
description
"This augment is valid only for IPv4 unicast.";
}
description
"This leaf augments the 'simple-next-hop' case in the reply to
the 'rt:fib-route' operation.";
leaf next-hop-address {
type inet:ipv4-address;
description
"IPv4 address of the next-hop.";
}
}
}

View file

@ -0,0 +1,636 @@
module ietf-ipv6-unicast-routing {
namespace "urn:ietf:params:xml:ns:yang:ietf-ipv6-unicast-routing";
prefix "v6ur";
import ietf-routing {
prefix "rt";
revision-date "2014-10-26";
}
import ietf-inet-types {
prefix "inet";
revision-date "2013-07-15";
}
import ietf-interfaces {
prefix "if";
revision-date "2013-07-15";
}
import ietf-ip {
prefix "ip";
revision-date "2014-06-16";
}
organization
"IETF NETMOD (NETCONF Data Modeling Language) Working Group";
contact
"WG Web: <http://tools.ietf.org/wg/netmod/>
WG List: <mailto:netmod@ietf.org>
WG Chair: Thomas Nadeau
<mailto:tnadeau@lucidvision.com>
WG Chair: Juergen Schoenwaelder
<mailto:j.schoenwaelder@jacobs-university.de>
Editor: Ladislav Lhotka
<mailto:lhotka@nic.cz>";
description
"This YANG module augments the 'ietf-routing' module with basic
configuration and operational state data for IPv6 unicast
routing.
Copyright (c) 2014 IETF Trust and the persons identified as
authors of the code. All rights reserved.
Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject to
the license terms contained in, the Simplified BSD License set
forth in Section 4.c of the IETF Trust's Legal Provisions
Relating to IETF Documents
(http://trustee.ietf.org/license-info).
This version of this YANG module is part of RFC XXXX; see the
RFC itself for full legal notices.";
revision 2014-10-26 {
description
"Initial revision.";
reference
"RFC XXXX: A YANG Data Model for Routing Management";
}
/* Identities */
identity ipv6-unicast {
base rt:ipv6;
description
"This identity represents the IPv6 unicast address family.";
}
/* Operational state data */
augment "/rt:routing-state/rt:routing-instance/rt:interfaces/"
+ "rt:interface" {
description
"IPv6-specific parameters of router interfaces.";
container ipv6-router-advertisements {
description
"Parameters of IPv6 Router Advertisements.";
leaf send-advertisements {
type boolean;
description
"A flag indicating whether or not the router sends periodic
Router Advertisements and responds to Router
Solicitations.";
}
leaf max-rtr-adv-interval {
type uint16 {
range "4..1800";
}
units "seconds";
description
"The maximum time allowed between sending unsolicited
multicast Router Advertisements from the interface.";
}
leaf min-rtr-adv-interval {
type uint16 {
range "3..1350";
}
units "seconds";
description
"The minimum time allowed between sending unsolicited
multicast Router Advertisements from the interface.";
}
leaf managed-flag {
type boolean;
description
"The value that is placed in the 'Managed address
configuration' flag field in the Router Advertisement.";
}
leaf other-config-flag {
type boolean;
description
"The value that is placed in the 'Other configuration' flag
field in the Router Advertisement.";
}
leaf link-mtu {
type uint32;
description
"The value that is placed in MTU options sent by the
router. A value of zero indicates that no MTU options are
sent.";
}
leaf reachable-time {
type uint32 {
range "0..3600000";
}
units "milliseconds";
description
"The value that is placed in the Reachable Time field in
the Router Advertisement messages sent by the router. A
value of zero means unspecified (by this router).";
}
leaf retrans-timer {
type uint32;
units "milliseconds";
description
"The value that is placed in the Retrans Timer field in the
Router Advertisement messages sent by the router. A value
of zero means unspecified (by this router).";
}
leaf cur-hop-limit {
type uint8;
description
"The value that is placed in the Cur Hop Limit field in the
Router Advertisement messages sent by the router. A value
of zero means unspecified (by this router).";
}
leaf default-lifetime {
type uint16 {
range "0..9000";
}
units "seconds";
description
"The value that is placed in the Router Lifetime field of
Router Advertisements sent from the interface, in seconds.
A value of zero indicates that the router is not to be
used as a default router.";
}
container prefix-list {
description
"A list of prefixes that are placed in Prefix Information
options in Router Advertisement messages sent from the
interface.
By default, these are all prefixes that the router
advertises via routing protocols as being on-link for the
interface from which the advertisement is sent.";
list prefix {
key "prefix-spec";
description
"Advertised prefix entry and its parameters.";
leaf prefix-spec {
type inet:ipv6-prefix;
description
"IPv6 address prefix.";
}
leaf valid-lifetime {
type uint32;
units "seconds";
description
"The value that is placed in the Valid Lifetime in the
Prefix Information option. The designated value of all
1's (0xffffffff) represents infinity.";
}
leaf on-link-flag {
type boolean;
description
"The value that is placed in the on-link flag ('L-bit')
field in the Prefix Information option.";
}
leaf preferred-lifetime {
type uint32;
units "seconds";
description
"The value that is placed in the Preferred Lifetime in
the Prefix Information option, in seconds. The
designated value of all 1's (0xffffffff) represents
infinity.";
}
leaf autonomous-flag {
type boolean;
description
"The value that is placed in the Autonomous Flag field
in the Prefix Information option.";
}
}
}
}
}
augment "/rt:routing-state/rt:ribs/rt:rib/rt:routes/rt:route" {
when "../../rt:address-family = 'v6ur:ipv6-unicast'" {
description
"This augment is valid only for IPv6 unicast.";
}
description
"This leaf augments an IPv6 unicast route.";
leaf destination-prefix {
type inet:ipv6-prefix;
description
"IPv6 destination prefix.";
}
}
augment "/rt:routing-state/rt:ribs/rt:rib/rt:routes/rt:route/"
+ "rt:next-hop/rt:next-hop-options/rt:simple-next-hop" {
when "../../../rt:address-family = 'v6ur:ipv6-unicast'" {
description
"This augment is valid only for IPv6 unicast.";
}
description
"This leaf augments the 'simple-next-hop' case of IPv6 unicast
routes.";
leaf next-hop {
type inet:ipv6-address;
description
"IPv6 address of the next-hop.";
}
}
augment "/rt:routing-state/rt:next-hop-lists/rt:next-hop-list/"
+ "rt:next-hop/rt:next-hop-options/rt:simple-next-hop" {
when "../rt:address-family = 'v6ur:ipv6-unicast'" {
description
"This augment is valid only for IPv6 unicast.";
}
description
"This leaf augments next-hop list with IPv6 next-hop address.
routes.";
leaf next-hop-address {
type inet:ipv6-address;
description
"IPv6 address of the next-hop.";
}
}
/* Configuration data */
augment
"/rt:routing/rt:routing-instance/rt:interfaces/rt:interface" {
when "/if:interfaces/if:interface[if:name=current()/rt:name]/"
+ "ip:ipv6/ip:enabled='true'" {
description
"This augment is only valid for router interfaces with
enabled IPv6.";
}
description
"Configuration of IPv6-specific parameters of router
interfaces.";
container ipv6-router-advertisements {
description
"Configuration of IPv6 Router Advertisements.";
leaf send-advertisements {
type boolean;
default "false";
description
"A flag indicating whether or not the router sends periodic
Router Advertisements and responds to Router
Solicitations.";
reference
"RFC 4861: Neighbor Discovery for IP version 6 (IPv6) -
AdvSendAdvertisements.";
}
leaf max-rtr-adv-interval {
type uint16 {
range "4..1800";
}
units "seconds";
default "600";
description
"The maximum time allowed between sending unsolicited
multicast Router Advertisements from the interface.";
reference
"RFC 4861: Neighbor Discovery for IP version 6 (IPv6) -
MaxRtrAdvInterval.";
}
leaf min-rtr-adv-interval {
type uint16 {
range "3..1350";
}
units "seconds";
must ". <= 0.75 * ../max-rtr-adv-interval" {
description
"The value MUST NOT be greater than 75 % of
'max-rtr-adv-interval'.";
}
description
"The minimum time allowed between sending unsolicited
multicast Router Advertisements from the interface.
The default value to be used operationally if this leaf is
not configured is determined as follows:
- if max-rtr-adv-interval >= 9 seconds, the default value
is 0.33 * max-rtr-adv-interval;
- otherwise it is 0.75 * max-rtr-adv-interval.";
reference
"RFC 4861: Neighbor Discovery for IP version 6 (IPv6) -
MinRtrAdvInterval.";
}
leaf managed-flag {
type boolean;
default "false";
description
"The value to be placed in the 'Managed address
configuration' flag field in the Router Advertisement.";
reference
"RFC 4861: Neighbor Discovery for IP version 6 (IPv6) -
AdvManagedFlag.";
}
leaf other-config-flag {
type boolean;
default "false";
description
"The value to be placed in the 'Other configuration' flag
field in the Router Advertisement.";
reference
"RFC 4861: Neighbor Discovery for IP version 6 (IPv6) -
AdvOtherConfigFlag.";
}
leaf link-mtu {
type uint32;
default "0";
description
"The value to be placed in MTU options sent by the router.
A value of zero indicates that no MTU options are sent.";
reference
"RFC 4861: Neighbor Discovery for IP version 6 (IPv6) -
AdvLinkMTU.";
}
leaf reachable-time {
type uint32 {
range "0..3600000";
}
units "milliseconds";
default "0";
description
"The value to be placed in the Reachable Time field in the
Router Advertisement messages sent by the router. A value
of zero means unspecified (by this router).";
reference
"RFC 4861: Neighbor Discovery for IP version 6 (IPv6) -
AdvReachableTime.";
}
leaf retrans-timer {
type uint32;
units "milliseconds";
default "0";
description
"The value to be placed in the Retrans Timer field in the
Router Advertisement messages sent by the router. A value
of zero means unspecified (by this router).";
reference
"RFC 4861: Neighbor Discovery for IP version 6 (IPv6) -
AdvRetransTimer.";
}
leaf cur-hop-limit {
type uint8;
description
"The value to be placed in the Cur Hop Limit field in the
Router Advertisement messages sent by the router. A value
of zero means unspecified (by this router).
If this parameter is not configured, the device SHOULD use
the value specified in IANA Assigned Numbers that was in
effect at the time of implementation.";
reference
"RFC 4861: Neighbor Discovery for IP version 6 (IPv6) -
AdvCurHopLimit.
IANA: IP Parameters,
http://www.iana.org/assignments/ip-parameters";
}
leaf default-lifetime {
type uint16 {
range "0..9000";
}
units "seconds";
description
"The value to be placed in the Router Lifetime field of
Router Advertisements sent from the interface, in seconds.
It MUST be either zero or between max-rtr-adv-interval and
9000 seconds. A value of zero indicates that the router is
not to be used as a default router. These limits may be
overridden by specific documents that describe how IPv6
operates over different link layers.
If this parameter is not configured, the device SHOULD use
a value of 3 * max-rtr-adv-interval.";
reference
"RFC 4861: Neighbor Discovery for IP version 6 (IPv6) -
AdvDefaultLifeTime.";
}
container prefix-list {
description
"Configuration of prefixes to be placed in Prefix
Information options in Router Advertisement messages sent
from the interface.
Prefixes that are advertised by default but do not have
their entries in the child 'prefix' list are advertised
with the default values of all parameters.
The link-local prefix SHOULD NOT be included in the list
of advertised prefixes.";
reference
"RFC 4861: Neighbor Discovery for IP version 6 (IPv6) -
AdvPrefixList.";
list prefix {
key "prefix-spec";
description
"Configuration of an advertised prefix entry.";
leaf prefix-spec {
type inet:ipv6-prefix;
description
"IPv6 address prefix.";
}
choice control-adv-prefixes {
default "advertise";
description
"The prefix either may be explicitly removed from the
set of advertised prefixes, or parameters with which
it is advertised may be specified (default case).";
leaf no-advertise {
type empty;
description
"The prefix will not be advertised.
This can be used for removing the prefix from the
default set of advertised prefixes.";
}
case advertise {
leaf valid-lifetime {
type uint32;
units "seconds";
default "2592000";
description
"The value to be placed in the Valid Lifetime in
the Prefix Information option. The designated
value of all 1's (0xffffffff) represents
infinity.";
reference
"RFC 4861: Neighbor Discovery for IP version 6
(IPv6) - AdvValidLifetime.";
}
leaf on-link-flag {
type boolean;
default "true";
description
"The value to be placed in the on-link flag
('L-bit') field in the Prefix Information
option.";
reference
"RFC 4861: Neighbor Discovery for IP version 6
(IPv6) - AdvOnLinkFlag.";
}
leaf preferred-lifetime {
type uint32;
units "seconds";
must ". <= ../valid-lifetime" {
description
"This value MUST NOT be greater than
valid-lifetime.";
}
default "604800";
description
"The value to be placed in the Preferred Lifetime
in the Prefix Information option. The designated
value of all 1's (0xffffffff) represents
infinity.";
reference
"RFC 4861: Neighbor Discovery for IP version 6
(IPv6) - AdvPreferredLifetime.";
}
leaf autonomous-flag {
type boolean;
default "true";
description
"The value to be placed in the Autonomous Flag
field in the Prefix Information option.";
reference
"RFC 4861: Neighbor Discovery for IP version 6
(IPv6) - AdvAutonomousFlag.";
}
}
}
}
}
}
}
augment "/rt:routing/rt:routing-instance/rt:routing-protocols/"
+ "rt:routing-protocol/rt:static-routes" {
description
"This augment defines the configuration of the 'static'
pseudo-protocol with data specific to IPv6 unicast.";
container ipv6 {
description
"Configuration of a 'static' pseudo-protocol instance
consists of a list of routes.";
list route {
key "destination-prefix";
ordered-by "user";
description
"A user-ordered list of static routes.";
leaf destination-prefix {
type inet:ipv6-prefix;
mandatory "true";
description
"IPv6 destination prefix.";
}
leaf description {
type string;
description
"Textual description of the route.";
}
container next-hop {
description
"Configuration of next-hop.";
grouping next-hop-content {
description
"Next-hop content for IPv6 unicast static routes.";
uses rt:next-hop-content {
augment "next-hop-options" {
description
"Add next-hop address case.";
leaf next-hop-address {
type inet:ipv6-address;
description
"IPv6 address of the next-hop.";
}
}
}
}
choice simple-or-list {
description
"Options for next-hops.";
list multipath-entry {
if-feature rt:multipath-routes;
key "name";
description
"List of alternative next-hops.";
leaf name {
type string;
description
"A unique identifier of the next-hop entry.";
}
uses next-hop-content;
uses rt:next-hop-classifiers;
}
case simple-next-hop {
uses next-hop-content;
}
}
}
}
}
}
/* RPC methods */
augment "/rt:fib-route/rt:input/rt:destination-address" {
when "rt:address-family='v6ur:ipv6-unicast'" {
description
"This augment is valid only for IPv6 unicast.";
}
description
"This leaf augments the 'rt:destination-address' parameter of
the 'rt:fib-route' operation.";
leaf address {
type inet:ipv6-address;
description
"IPv6 destination address.";
}
}
augment "/rt:fib-route/rt:output/rt:route" {
when "rt:address-family='v6ur:ipv6-unicast'" {
description
"This augment is valid only for IPv6 unicast.";
}
description
"This leaf augments the reply to the 'rt:fib-route'
operation.";
leaf destination-prefix {
type inet:ipv6-prefix;
description
"IPv6 destination prefix.";
}
}
augment "/rt:fib-route/rt:output/rt:route/rt:next-hop/"
+ "rt:next-hop-options/rt:simple-next-hop" {
when "../rt:address-family='v4ur:ipv6-unicast'" {
description
"This augment is valid only for IPv6 unicast.";
}
description
"This leaf augments the 'simple-next-hop' case in the reply to
the 'rt:fib-route' operation.";
leaf next-hop-address {
type inet:ipv6-address;
description
"IPv6 address of the next-hop.";
}
}
}

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,481 @@
module ietf-yang-types {
namespace "urn:ietf:params:xml:ns:yang:ietf-yang-types";
prefix "yang";
organization
"IETF NETMOD (NETCONF Data Modeling Language) Working Group";
contact
"WG Web: <http://tools.ietf.org/wg/netmod/>
WG List: <mailto:netmod@ietf.org>
WG Chair: David Kessens
<mailto:david.kessens@nsn.com>
WG Chair: Juergen Schoenwaelder
<mailto:j.schoenwaelder@jacobs-university.de>
Editor: Juergen Schoenwaelder
<mailto:j.schoenwaelder@jacobs-university.de>";
description
"This module contains a collection of generally useful derived
YANG data types.
Copyright (c) 2013 IETF Trust and the persons identified as
authors of the code. All rights reserved.
Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject
to the license terms contained in, the Simplified BSD License
set forth in Section 4.c of the IETF Trust's Legal Provisions
Relating to IETF Documents
(http://trustee.ietf.org/license-info).
This version of this YANG module is part of RFC 6991; see
the RFC itself for full legal notices.";
revision 2013-07-15 {
description
"This revision adds the following new data types:
- yang-identifier
- hex-string
- uuid
- dotted-quad";
reference
"RFC 6991: Common YANG Data Types";
}
revision 2010-09-24 {
description
"Initial revision.";
reference
"RFC 6021: Common YANG Data Types";
}
/*** collection of counter and gauge types ***/
typedef counter32 {
type uint32;
description
"The counter32 type represents a non-negative integer
that monotonically increases until it reaches a
maximum value of 2^32-1 (4294967295 decimal), when it
wraps around and starts increasing again from zero.
Counters have no defined 'initial' value, and thus, a
single value of a counter has (in general) no information
content. Discontinuities in the monotonically increasing
value normally occur at re-initialization of the
management system, and at other times as specified in the
description of a schema node using this type. If such
other times can occur, for example, the creation of
a schema node of type counter32 at times other than
re-initialization, then a corresponding schema node
should be defined, with an appropriate type, to indicate
the last discontinuity.
The counter32 type should not be used for configuration
schema nodes. A default statement SHOULD NOT be used in
combination with the type counter32.
In the value set and its semantics, this type is equivalent
to the Counter32 type of the SMIv2.";
reference
"RFC 2578: Structure of Management Information Version 2
(SMIv2)";
}
typedef zero-based-counter32 {
type yang:counter32;
default "0";
description
"The zero-based-counter32 type represents a counter32
that has the defined 'initial' value zero.
A schema node of this type will be set to zero (0) on creation
and will thereafter increase monotonically until it reaches
a maximum value of 2^32-1 (4294967295 decimal), when it
wraps around and starts increasing again from zero.
Provided that an application discovers a new schema node
of this type within the minimum time to wrap, it can use the
'initial' value as a delta. It is important for a management
station to be aware of this minimum time and the actual time
between polls, and to discard data if the actual time is too
long or there is no defined minimum time.
In the value set and its semantics, this type is equivalent
to the ZeroBasedCounter32 textual convention of the SMIv2.";
reference
"RFC 4502: Remote Network Monitoring Management Information
Base Version 2";
}
typedef counter64 {
type uint64;
description
"The counter64 type represents a non-negative integer
that monotonically increases until it reaches a
maximum value of 2^64-1 (18446744073709551615 decimal),
when it wraps around and starts increasing again from zero.
Counters have no defined 'initial' value, and thus, a
single value of a counter has (in general) no information
content. Discontinuities in the monotonically increasing
value normally occur at re-initialization of the
management system, and at other times as specified in the
description of a schema node using this type. If such
other times can occur, for example, the creation of
a schema node of type counter64 at times other than
re-initialization, then a corresponding schema node
should be defined, with an appropriate type, to indicate
the last discontinuity.
The counter64 type should not be used for configuration
schema nodes. A default statement SHOULD NOT be used in
combination with the type counter64.
In the value set and its semantics, this type is equivalent
to the Counter64 type of the SMIv2.";
reference
"RFC 2578: Structure of Management Information Version 2
(SMIv2)";
}
typedef zero-based-counter64 {
type yang:counter64;
default "0";
description
"The zero-based-counter64 type represents a counter64 that
has the defined 'initial' value zero.
A schema node of this type will be set to zero (0) on creation
and will thereafter increase monotonically until it reaches
a maximum value of 2^64-1 (18446744073709551615 decimal),
when it wraps around and starts increasing again from zero.
Provided that an application discovers a new schema node
of this type within the minimum time to wrap, it can use the
'initial' value as a delta. It is important for a management
station to be aware of this minimum time and the actual time
between polls, and to discard data if the actual time is too
long or there is no defined minimum time.
In the value set and its semantics, this type is equivalent
to the ZeroBasedCounter64 textual convention of the SMIv2.";
reference
"RFC 2856: Textual Conventions for Additional High Capacity
Data Types";
}
typedef gauge32 {
type uint32;
description
"The gauge32 type represents a non-negative integer, which
may increase or decrease, but shall never exceed a maximum
value, nor fall below a minimum value. The maximum value
cannot be greater than 2^32-1 (4294967295 decimal), and
the minimum value cannot be smaller than 0. The value of
a gauge32 has its maximum value whenever the information
being modeled is greater than or equal to its maximum
value, and has its minimum value whenever the information
being modeled is smaller than or equal to its minimum value.
If the information being modeled subsequently decreases
below (increases above) the maximum (minimum) value, the
gauge32 also decreases (increases).
In the value set and its semantics, this type is equivalent
to the Gauge32 type of the SMIv2.";
reference
"RFC 2578: Structure of Management Information Version 2
(SMIv2)";
}
typedef gauge64 {
type uint64;
description
"The gauge64 type represents a non-negative integer, which
may increase or decrease, but shall never exceed a maximum
value, nor fall below a minimum value. The maximum value
cannot be greater than 2^64-1 (18446744073709551615), and
the minimum value cannot be smaller than 0. The value of
a gauge64 has its maximum value whenever the information
being modeled is greater than or equal to its maximum
value, and has its minimum value whenever the information
being modeled is smaller than or equal to its minimum value.
If the information being modeled subsequently decreases
below (increases above) the maximum (minimum) value, the
gauge64 also decreases (increases).
In the value set and its semantics, this type is equivalent
to the CounterBasedGauge64 SMIv2 textual convention defined
in RFC 2856";
reference
"RFC 2856: Textual Conventions for Additional High Capacity
Data Types";
}
/*** collection of identifier-related types ***/
typedef object-identifier {
type string {
pattern '(([0-1](\.[1-3]?[0-9]))|(2\.(0|([1-9]\d*))))'
+ '(\.(0|([1-9]\d*)))*';
}
description
"The object-identifier type represents administratively
assigned names in a registration-hierarchical-name tree.
Values of this type are denoted as a sequence of numerical
non-negative sub-identifier values. Each sub-identifier
value MUST NOT exceed 2^32-1 (4294967295). Sub-identifiers
are separated by single dots and without any intermediate
whitespace.
The ASN.1 standard restricts the value space of the first
sub-identifier to 0, 1, or 2. Furthermore, the value space
of the second sub-identifier is restricted to the range
0 to 39 if the first sub-identifier is 0 or 1. Finally,
the ASN.1 standard requires that an object identifier
has always at least two sub-identifiers. The pattern
captures these restrictions.
Although the number of sub-identifiers is not limited,
module designers should realize that there may be
implementations that stick with the SMIv2 limit of 128
sub-identifiers.
This type is a superset of the SMIv2 OBJECT IDENTIFIER type
since it is not restricted to 128 sub-identifiers. Hence,
this type SHOULD NOT be used to represent the SMIv2 OBJECT
IDENTIFIER type; the object-identifier-128 type SHOULD be
used instead.";
reference
"ISO9834-1: Information technology -- Open Systems
Interconnection -- Procedures for the operation of OSI
Registration Authorities: General procedures and top
arcs of the ASN.1 Object Identifier tree";
}
typedef object-identifier-128 {
type object-identifier {
pattern '\d*(\.\d*){1,127}';
}
description
"This type represents object-identifiers restricted to 128
sub-identifiers.
In the value set and its semantics, this type is equivalent
to the OBJECT IDENTIFIER type of the SMIv2.";
reference
"RFC 2578: Structure of Management Information Version 2
(SMIv2)";
}
typedef yang-identifier {
type string {
length "1..max";
pattern '[a-zA-Z_][a-zA-Z0-9\-_.]*';
pattern '.|..|[^xX].*|.[^mM].*|..[^lL].*';
}
description
"A YANG identifier string as defined by the 'identifier'
rule in Section 12 of RFC 6020. An identifier must
start with an alphabetic character or an underscore
followed by an arbitrary sequence of alphabetic or
numeric characters, underscores, hyphens, or dots.
A YANG identifier MUST NOT start with any possible
combination of the lowercase or uppercase character
sequence 'xml'.";
reference
"RFC 6020: YANG - A Data Modeling Language for the Network
Configuration Protocol (NETCONF)";
}
/*** collection of types related to date and time***/
typedef date-and-time {
type string {
pattern '\d{4}-\d{2}-\d{2}T\d{2}:\d{2}:\d{2}(\.\d+)?'
+ '(Z|[\+\-]\d{2}:\d{2})';
}
description
"The date-and-time type is a profile of the ISO 8601
standard for representation of dates and times using the
Gregorian calendar. The profile is defined by the
date-time production in Section 5.6 of RFC 3339.
The date-and-time type is compatible with the dateTime XML
schema type with the following notable exceptions:
(a) The date-and-time type does not allow negative years.
(b) The date-and-time time-offset -00:00 indicates an unknown
time zone (see RFC 3339) while -00:00 and +00:00 and Z
all represent the same time zone in dateTime.
(c) The canonical format (see below) of data-and-time values
differs from the canonical format used by the dateTime XML
schema type, which requires all times to be in UTC using
the time-offset 'Z'.
This type is not equivalent to the DateAndTime textual
convention of the SMIv2 since RFC 3339 uses a different
separator between full-date and full-time and provides
higher resolution of time-secfrac.
The canonical format for date-and-time values with a known time
zone uses a numeric time zone offset that is calculated using
the device's configured known offset to UTC time. A change of
the device's offset to UTC time will cause date-and-time values
to change accordingly. Such changes might happen periodically
in case a server follows automatically daylight saving time
(DST) time zone offset changes. The canonical format for
date-and-time values with an unknown time zone (usually
referring to the notion of local time) uses the time-offset
-00:00.";
reference
"RFC 3339: Date and Time on the Internet: Timestamps
RFC 2579: Textual Conventions for SMIv2
XSD-TYPES: XML Schema Part 2: Datatypes Second Edition";
}
typedef timeticks {
type uint32;
description
"The timeticks type represents a non-negative integer that
represents the time, modulo 2^32 (4294967296 decimal), in
hundredths of a second between two epochs. When a schema
node is defined that uses this type, the description of
the schema node identifies both of the reference epochs.
In the value set and its semantics, this type is equivalent
to the TimeTicks type of the SMIv2.";
reference
"RFC 2578: Structure of Management Information Version 2
(SMIv2)";
}
typedef timestamp {
type yang:timeticks;
description
"The timestamp type represents the value of an associated
timeticks schema node at which a specific occurrence
happened. The specific occurrence must be defined in the
description of any schema node defined using this type. When
the specific occurrence occurred prior to the last time the
associated timeticks attribute was zero, then the timestamp
value is zero. Note that this requires all timestamp values
to be reset to zero when the value of the associated timeticks
attribute reaches 497+ days and wraps around to zero.
The associated timeticks schema node must be specified
in the description of any schema node using this type.
In the value set and its semantics, this type is equivalent
to the TimeStamp textual convention of the SMIv2.";
reference
"RFC 2579: Textual Conventions for SMIv2";
}
/*** collection of generic address types ***/
typedef phys-address {
type string {
pattern '([0-9a-fA-F]{2}(:[0-9a-fA-F]{2})*)?';
}
description
"Represents media- or physical-level addresses represented
as a sequence octets, each octet represented by two hexadecimal
numbers. Octets are separated by colons. The canonical
representation uses lowercase characters.
In the value set and its semantics, this type is equivalent
to the PhysAddress textual convention of the SMIv2.";
reference
"RFC 2579: Textual Conventions for SMIv2";
}
typedef mac-address {
type string {
pattern '[0-9a-fA-F]{2}(:[0-9a-fA-F]{2}){5}';
}
description
"The mac-address type represents an IEEE 802 MAC address.
The canonical representation uses lowercase characters.
In the value set and its semantics, this type is equivalent
to the MacAddress textual convention of the SMIv2.";
reference
"IEEE 802: IEEE Standard for Local and Metropolitan Area
Networks: Overview and Architecture
RFC 2579: Textual Conventions for SMIv2";
}
/*** collection of XML-specific types ***/
typedef xpath1.0 {
type string;
description
"This type represents an XPATH 1.0 expression.
When a schema node is defined that uses this type, the
description of the schema node MUST specify the XPath
context in which the XPath expression is evaluated.";
reference
"XPATH: XML Path Language (XPath) Version 1.0";
}
/*** collection of string types ***/
typedef hex-string {
type string {
pattern '([0-9a-fA-F]{2}(:[0-9a-fA-F]{2})*)?';
}
description
"A hexadecimal string with octets represented as hex digits
separated by colons. The canonical representation uses
lowercase characters.";
}
typedef uuid {
type string {
pattern '[0-9a-fA-F]{8}-[0-9a-fA-F]{4}-[0-9a-fA-F]{4}-'
+ '[0-9a-fA-F]{4}-[0-9a-fA-F]{12}';
}
description
"A Universally Unique IDentifier in the string representation
defined in RFC 4122. The canonical representation uses
lowercase characters.
The following is an example of a UUID in string representation:
f81d4fae-7dec-11d0-a765-00a0c91e6bf6
";
reference
"RFC 4122: A Universally Unique IDentifier (UUID) URN
Namespace";
}
typedef dotted-quad {
type string {
pattern
'(([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\.){3}'
+ '([0-9]|[1-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])';
}
description
"An unsigned 32-bit number expressed in the dotted-quad
notation, i.e., four octets written as decimal numbers
and separated with the '.' (full stop) character.";
}
}

View file

@ -0,0 +1,27 @@
# Main YANG module first parsed by parser (in CLICON_YANG_DIR). eg clicon.yang.
# Save values as XML in database instead of lvec:s.
# This is optimized for yang specified applications
# But not compatible with key-based application (eg Rost)
CLICON_DB_XML 1
# Startup CLI mode. This should match the CLICON_MODE in your startup clispec file
CLICON_CLI_MODE routing
# Option used to construct initial yang file:
# <module>[@<revision>]
# This option is only relevant if CLICON_DBSPEC_TYPE is YANG
CLICON_YANG_MODULE_MAIN ietf-ip
# Option used to construct initial yang file:
# <module>[@<revision>]
# This option is only relevant if CLICON_DBSPEC_TYPE is YANG
CLICON_YANG_MODULE_REVISION 2014-06-16
# Generate code for CLI completion of existing db symbols
# CLICON_CLI_GENMODEL_COMPLETION 0
CLICON_CLI_GENMODEL_COMPLETION 1
# How to generate and show CLI syntax: VARS|ALL
# CLICON_CLI_GENMODEL_TYPE VARS
CLICON_CLI_GENMODEL_TYPE VARS

78
example/routing_backend.c Normal file
View file

@ -0,0 +1,78 @@
/*
*
Copyright (C) 2009-2016 Olof Hagsand and Benny Holmgren
This file is part of CLIXON.
CLIXON is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
CLIXON is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with CLIXON; see the file COPYING. If not, see
<http://www.gnu.org/licenses/>.
*
* IETF yang routing example
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <signal.h>
#include <unistd.h>
/* clicon */
#include <cligen/cligen.h>
/* Clicon library functions. */
#include <clicon/clicon.h>
/* These include signatures for plugin and transaction callbacks. */
#include <clicon/clicon_backend.h>
/*
* Commit callback.
* We do nothing here but simply create the config based on the current
* db once everything is done as if will then contain the new config.
*/
int
transaction_commit(clicon_handle h,
transaction_data td)
{
fprintf(stderr, "%s\n", __FUNCTION__);
transaction_print(stderr, td);
return 0;
}
int
transaction_validate(clicon_handle h,
transaction_data td)
{
fprintf(stderr, "%s\n", __FUNCTION__);
transaction_print(stderr, td);
return 0;
}
/*
* Plugin initialization
*/
int
plugin_init(clicon_handle h)
{
int retval = -1;
retval = 0;
// done:
return retval;
}

57
example/routing_cli.c Normal file
View file

@ -0,0 +1,57 @@
/*
*
Copyright (C) 2009-2013 Olof Hagsand and Benny Holmgren
This file is part of CLICON.
CLICON is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
CLICON is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with CLICON; see the file COPYING. If not, see
<http://www.gnu.org/licenses/>.
*
* hello clicon cli frontend
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <syslog.h>
#include <unistd.h>
#include <assert.h>
#include <math.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <sys/param.h>
#include <netinet/in.h>
#include <fnmatch.h> /* matching strings */
#include <signal.h> /* matching strings */
/* clicon */
#include <cligen/cligen.h>
#include <clicon/clicon.h>
#include <clicon/clicon_cli.h>
/*
* Plugin initialization
*/
int
plugin_init(clicon_handle h)
{
struct timeval tv;
gettimeofday(&tv, NULL);
srandom(tv.tv_usec);
return 0;
}

45
example/routing_cli.cli Normal file
View file

@ -0,0 +1,45 @@
# $Id: datamodel_cli.cli,v 1.2 2013/09/19 15:02:38 olof Exp $
# Common CLI syntax for both server and PMNode operatio mode
CLICON_MODE="routing";
CLICON_PROMPT="%U@%H> ";
# Note, when switching to PT, change datamodel to only @datamodel
#set @datamodel:ietf-routing, cli_merge();
#set @datamodel:ietf-ipv4-unicast-routing, cli_merge();
set @datamodel:ietf-ip, cli_merge();
#delete("Delete a configuration item") @datamodel:ietf-ipv4-unicast-routing, cli_del();
delete("Delete a configuration item") @datamodel:ietf-ip, cli_del();
validate("Validate changes"), cli_validate();
commit("Commit the changes"), cli_commit((int)0); # snapshot
quit("Quit Hello"), cli_quit();
delete("Delete a configuration item") all("Delete whole candidate configuration"), delete_all("candidate");
no("Negate or remove") debug("Debugging parts of the system"), cli_debug((int)0);
debug("Debugging parts of the system"), cli_debug((int)1);{
level("Set debug level: 1..n") <level:int32>("Set debug level (0..n)"), cli_debug();
}
discard("Discard edits (rollback 0)"), discard_changes();
show("Show a particular state of the system"){
xpath("Show configuration") <xpath:string>("XPATH expression"), show_conf_xpath("candidate");
compare("Compare candidate and running databases"), compare_dbs((int32)0);{
xml("Show comparison in xml"), compare_dbs((int32)0);
text("Show comparison in text"), compare_dbs((int32)1);
}
configuration("Show configuration"), show_conf_as_text("candidate /");{
xml("Show configuration as XML"), show_conf_as_xml("candidate /");
netconf("Show configuration as netconf edit-config operation"), show_conf_as_netconf("candidate /");
text("Show configuration as text"), show_conf_as_text("candidate /");
cli("Show configuration as cli commands"), show_conf_as_cli("candidate /");
json("Show configuration as cli commands"), show_conf_as_json("candidate /");
}
}
save("Save candidate configuration to XML file") <filename:string>("Filename (local filename)"), save_config_file("candidate filename");
load("Load configuration from XML file") <filename:string>("Filename (local filename)"),load_config_file("filename replace");{
replace("Replace candidate with file contents"), load_config_file("filename replace");
merge("Merge file with existent candidate"), load_config_file("filename merge");
}

62
example/routing_netconf.c Normal file
View file

@ -0,0 +1,62 @@
/*
*
Copyright (C) 2009-2016 Olof Hagsand and Benny Holmgren
This file is part of CLIXON.
CLIXON is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
CLIXON is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with CLIXON; see the file COPYING. If not, see
<http://www.gnu.org/licenses/>.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <syslog.h>
#include <unistd.h>
#include <assert.h>
#include <sys/stat.h>
#include <sys/param.h>
#include <cligen/cligen.h>
#include <clicon/clicon.h>
#include <clicon/clicon_netconf.h>
/*
* Plugin initialization
*/
int
plugin_init(clicon_handle h)
{
return 0;
}
/*
* Plugin start
* Called once everything has been initialized, right before
* the main event loop is entered.
*/
int
plugin_start(clicon_handle h, int argc, char **argv)
{
return 0;
}
int
plugin_exit(clicon_handle h)
{
return 0;
}