Started Clixon 5.5.0.PRE and removed optional YANGs (already disabled in 5.4.0)

This commit is contained in:
Olof hagsand 2021-12-05 12:03:10 +01:00
parent 01002ab14a
commit b67fae4d61
11 changed files with 10 additions and 4769 deletions

View file

@ -1,5 +1,6 @@
# Clixon Changelog # Clixon Changelog
* [5.5.0](#550) Planned January, 2022
* [5.4.0](#540) 30 November 2021 * [5.4.0](#540) 30 November 2021
* [5.3.0](#530) 27 September 2021 * [5.3.0](#530) 27 September 2021
* [5.2.0](#520) 1 July 2021 * [5.2.0](#520) 1 July 2021
@ -31,6 +32,9 @@
* [3.3.2](#332) Aug 27 2017 * [3.3.2](#332) Aug 27 2017
* [3.3.1](#331) June 7 2017 * [3.3.1](#331) June 7 2017
## 5.5.0
Planned: January, 2022
## 5.4.0 ## 5.4.0
30 November, 2021 30 November, 2021

View file

@ -13,7 +13,7 @@ See [documentation](https://clixon-docs.readthedocs.io), [project page](https://
Clixon is open-source and dual licensed. Either Apache License, Version 2.0 or GNU Clixon is open-source and dual licensed. Either Apache License, Version 2.0 or GNU
General Public License Version 2; you choose, see [LICENSE.md](LICENSE.md). General Public License Version 2; you choose, see [LICENSE.md](LICENSE.md).
Latest release is 5.3.0 from September 2021. See [CHANGELOG.md](CHANGELOG.md) release history. Clixon has a master branch continuously tested with CI, but releases are made ca every second month. Latest 5.4.0 release is from November 2021. Next is planned in January 2022. See [CHANGELOG.md](CHANGELOG.md) release history.
Clixon interaction is best done posting issues, pull requests, or joining the Clixon interaction is best done posting issues, pull requests, or joining the
[slack channel](https://clixondev.slack.com). [slack channel](https://clixondev.slack.com).

7
configure vendored
View file

@ -2265,9 +2265,9 @@ ac_configure="$SHELL $ac_aux_dir/configure" # Please don't use this var.
CLIXON_VERSION_MAJOR="5" CLIXON_VERSION_MAJOR="5"
CLIXON_VERSION_MINOR="4" CLIXON_VERSION_MINOR="5"
CLIXON_VERSION_PATCH="0" CLIXON_VERSION_PATCH="0"
CLIXON_VERSION="\"${CLIXON_VERSION_MAJOR}.${CLIXON_VERSION_MINOR}.${CLIXON_VERSION_PATCH}\"" CLIXON_VERSION="\"${CLIXON_VERSION_MAJOR}.${CLIXON_VERSION_MINOR}.${CLIXON_VERSION_PATCH}.PRE\""
# Debug flag # Debug flag
# Check whether --enable-debug was given. # Check whether --enable-debug was given.
@ -5678,7 +5678,7 @@ _ACEOF
ac_config_files="$ac_config_files Makefile lib/Makefile lib/src/Makefile lib/clixon/Makefile apps/Makefile apps/cli/Makefile apps/backend/Makefile apps/netconf/Makefile apps/restconf/Makefile include/Makefile etc/Makefile etc/clixonrc example/Makefile example/main/Makefile example/main/example.xml extras/rpm/Makefile docker/Makefile docker/main/Makefile docker/base/Makefile util/Makefile yang/Makefile yang/clixon/Makefile yang/mandatory/Makefile yang/optional/Makefile doc/Makefile test/Makefile test/config.sh test/cicd/Makefile test/vagrant/Makefile" ac_config_files="$ac_config_files Makefile lib/Makefile lib/src/Makefile lib/clixon/Makefile apps/Makefile apps/cli/Makefile apps/backend/Makefile apps/netconf/Makefile apps/restconf/Makefile include/Makefile etc/Makefile etc/clixonrc example/Makefile example/main/Makefile example/main/example.xml extras/rpm/Makefile docker/Makefile docker/main/Makefile docker/base/Makefile util/Makefile yang/Makefile yang/clixon/Makefile yang/mandatory/Makefile doc/Makefile test/Makefile test/config.sh test/cicd/Makefile test/vagrant/Makefile"
cat >confcache <<\_ACEOF cat >confcache <<\_ACEOF
# This file is a shell script that caches the results of configure # This file is a shell script that caches the results of configure
@ -6395,7 +6395,6 @@ do
"yang/Makefile") CONFIG_FILES="$CONFIG_FILES yang/Makefile" ;; "yang/Makefile") CONFIG_FILES="$CONFIG_FILES yang/Makefile" ;;
"yang/clixon/Makefile") CONFIG_FILES="$CONFIG_FILES yang/clixon/Makefile" ;; "yang/clixon/Makefile") CONFIG_FILES="$CONFIG_FILES yang/clixon/Makefile" ;;
"yang/mandatory/Makefile") CONFIG_FILES="$CONFIG_FILES yang/mandatory/Makefile" ;; "yang/mandatory/Makefile") CONFIG_FILES="$CONFIG_FILES yang/mandatory/Makefile" ;;
"yang/optional/Makefile") CONFIG_FILES="$CONFIG_FILES yang/optional/Makefile" ;;
"doc/Makefile") CONFIG_FILES="$CONFIG_FILES doc/Makefile" ;; "doc/Makefile") CONFIG_FILES="$CONFIG_FILES doc/Makefile" ;;
"test/Makefile") CONFIG_FILES="$CONFIG_FILES test/Makefile" ;; "test/Makefile") CONFIG_FILES="$CONFIG_FILES test/Makefile" ;;
"test/config.sh") CONFIG_FILES="$CONFIG_FILES test/config.sh" ;; "test/config.sh") CONFIG_FILES="$CONFIG_FILES test/config.sh" ;;

View file

@ -48,9 +48,9 @@ AC_INIT(lib/clixon/clixon.h.in)
AC_CONFIG_AUX_DIR(config-aux) AC_CONFIG_AUX_DIR(config-aux)
CLIXON_VERSION_MAJOR="5" CLIXON_VERSION_MAJOR="5"
CLIXON_VERSION_MINOR="4" CLIXON_VERSION_MINOR="5"
CLIXON_VERSION_PATCH="0" CLIXON_VERSION_PATCH="0"
CLIXON_VERSION="\"${CLIXON_VERSION_MAJOR}.${CLIXON_VERSION_MINOR}.${CLIXON_VERSION_PATCH}\"" CLIXON_VERSION="\"${CLIXON_VERSION_MAJOR}.${CLIXON_VERSION_MINOR}.${CLIXON_VERSION_PATCH}.PRE\""
# Debug flag # Debug flag
AC_ARG_ENABLE(debug, AS_HELP_STRING([--enable-debug],[Build with debug symbols, default: no]),[ AC_ARG_ENABLE(debug, AS_HELP_STRING([--enable-debug],[Build with debug symbols, default: no]),[
@ -374,7 +374,6 @@ AC_OUTPUT(Makefile
yang/Makefile yang/Makefile
yang/clixon/Makefile yang/clixon/Makefile
yang/mandatory/Makefile yang/mandatory/Makefile
yang/optional/Makefile
doc/Makefile doc/Makefile
test/Makefile test/Makefile
test/config.sh test/config.sh

View file

@ -1,72 +0,0 @@
#
# ***** BEGIN LICENSE BLOCK *****
#
# Copyright (C) 2017-2019 Olof Hagsand
# Copyright (C) 2020-2021 Olof Hagsand and Rubicon Communications, LLC(Netgate)
#
# This file is part of CLIXON
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Alternatively, the contents of this file may be used under the terms of
# the GNU General Public License Version 3 or later (the "GPL"),
# in which case the provisions of the GPL are applicable instead
# of those above. If you wish to allow use of your version of this file only
# under the terms of the GPL, and not to allow others to
# use your version of this file under the terms of Apache License version 2,
# indicate your decision by deleting the provisions above and replace them with
# the notice and other provisions required by the GPL. If you do not delete
# the provisions above, a recipient may use your version of this file under
# the terms of any one of the Apache License version 2 or the GPL.
#
# ***** END LICENSE BLOCK *****
#
VPATH = @srcdir@
srcdir = @srcdir@
top_srcdir = @top_srcdir@
prefix = @prefix@
bindir = @bindir@
includedir = @includedir@
datarootdir = @datarootdir@
# See also OPT_YANG_INSTALLDIR for optionali yang files
OPT_YANG_INSTALLDIR = @OPT_YANG_INSTALLDIR@
YANGSPECS = iana-if-type@2014-05-08.yang
YANGSPECS += ietf-interfaces@2018-02-20.yang
YANGSPECS += ietf-ip@2014-06-16.yang
YANGSPECS += ietf-netconf-monitoring@2010-10-04.yang
YANGSPECS += ietf-routing@2018-03-13.yang
YANGSPECS += iana-crypt-hash@2014-08-06.yang # collection example-module
all:
clean:
distclean: clean
rm -f Makefile *~ .depend
install: $(YANGSPECS)
install -d -m 0755 $(DESTDIR)$(OPT_YANG_INSTALLDIR)
install -m 0644 $(YANGSPECS) $(DESTDIR)$(OPT_YANG_INSTALLDIR)
uninstall:
(cd $(DESTDIR)$(OPT_YANG_INSTALLDIR); rm -rf *.yang)
install-include:
depend:
#include .depend

View file

@ -1,120 +0,0 @@
module iana-crypt-hash {
namespace "urn:ietf:params:xml:ns:yang:iana-crypt-hash";
prefix ianach;
organization "IANA";
contact
" Internet Assigned Numbers Authority
Postal: ICANN
12025 Waterfront Drive, Suite 300
Los Angeles, CA 90094-2536
United States
Tel: +1 310 301 5800
E-Mail: iana@iana.org>";
description
"This YANG module defines a type for storing passwords
using a hash function and features to indicate which hash
functions are supported by an implementation.
The latest revision of this YANG module can be obtained from
the IANA web site.
Requests for new values should be made to IANA via
email (iana@iana.org).
Copyright (c) 2014 IETF Trust and the persons identified as
authors of the code. All rights reserved.
Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject
to the license terms contained in, the Simplified BSD License
set forth in Section 4.c of the IETF Trust's Legal Provisions
Relating to IETF Documents
(http://trustee.ietf.org/license-info).
The initial version of this YANG module is part of RFC 7317;
see the RFC itself for full legal notices.";
revision 2014-08-06 {
description
"Initial revision.";
reference
"RFC 7317: A YANG Data Model for System Management";
}
typedef crypt-hash {
type string {
pattern
'$0$.*'
+ '|$1$[a-zA-Z0-9./]{1,8}$[a-zA-Z0-9./]{22}'
+ '|$5$(rounds=\d+$)?[a-zA-Z0-9./]{1,16}$[a-zA-Z0-9./]{43}'
+ '|$6$(rounds=\d+$)?[a-zA-Z0-9./]{1,16}$[a-zA-Z0-9./]{86}';
}
description
"The crypt-hash type is used to store passwords using
a hash function. The algorithms for applying the hash
function and encoding the result are implemented in
various UNIX systems as the function crypt(3).
A value of this type matches one of the forms:
$0$<clear text password>
$<id>$<salt>$<password hash>
$<id>$<parameter>$<salt>$<password hash>
The '$0$' prefix signals that the value is clear text. When
such a value is received by the server, a hash value is
calculated, and the string '$<id>$<salt>$' or
$<id>$<parameter>$<salt>$ is prepended to the result. This
value is stored in the configuration data store.
If a value starting with '$<id>$', where <id> is not '0', is
received, the server knows that the value already represents a
hashed value and stores it 'as is' in the data store.
When a server needs to verify a password given by a user, it
finds the stored password hash string for that user, extracts
the salt, and calculates the hash with the salt and given
password as input. If the calculated hash value is the same
as the stored value, the password given by the client is
accepted.
This type defines the following hash functions:
id | hash function | feature
---+---------------+-------------------
1 | MD5 | crypt-hash-md5
5 | SHA-256 | crypt-hash-sha-256
6 | SHA-512 | crypt-hash-sha-512
The server indicates support for the different hash functions
by advertising the corresponding feature.";
reference
"IEEE Std 1003.1-2008 - crypt() function
RFC 1321: The MD5 Message-Digest Algorithm
FIPS.180-4.2012: Secure Hash Standard (SHS)";
}
feature crypt-hash-md5 {
description
"Indicates that the device supports the MD5
hash function in 'crypt-hash' values.";
reference "RFC 1321: The MD5 Message-Digest Algorithm";
}
feature crypt-hash-sha-256 {
description
"Indicates that the device supports the SHA-256
hash function in 'crypt-hash' values.";
reference "FIPS.180-4.2012: Secure Hash Standard (SHS)";
}
feature crypt-hash-sha-512 {
description
"Indicates that the device supports the SHA-512
hash function in 'crypt-hash' values.";
reference "FIPS.180-4.2012: Secure Hash Standard (SHS)";
}
}

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

View file

@ -1,701 +0,0 @@
module ietf-ip {
namespace "urn:ietf:params:xml:ns:yang:ietf-ip";
prefix ip;
import ietf-interfaces {
prefix if;
}
import ietf-inet-types {
prefix inet;
}
import ietf-yang-types {
prefix yang;
}
organization
"IETF NETMOD (NETCONF Data Modeling Language) Working Group";
contact
"WG Web: <http://tools.ietf.org/wg/netmod/>
WG List: <mailto:netmod@ietf.org>
WG Chair: Thomas Nadeau
<mailto:tnadeau@lucidvision.com>
WG Chair: Juergen Schoenwaelder
<mailto:j.schoenwaelder@jacobs-university.de>
Editor: Martin Bjorklund
<mailto:mbj@tail-f.com>";
description
"This module contains a collection of YANG definitions for
configuring IP implementations.
Copyright (c) 2014 IETF Trust and the persons identified as
authors of the code. All rights reserved.
Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject
to the license terms contained in, the Simplified BSD License
set forth in Section 4.c of the IETF Trust's Legal Provisions
Relating to IETF Documents
(http://trustee.ietf.org/license-info).
This version of this YANG module is part of RFC 7277; see
the RFC itself for full legal notices.";
revision 2014-06-16 {
description
"Initial revision.";
reference
"RFC 7277: A YANG Data Model for IP Management";
}
/*
* Features
*/
feature ipv4-non-contiguous-netmasks {
description
"Indicates support for configuring non-contiguous
subnet masks.";
}
feature ipv6-privacy-autoconf {
description
"Indicates support for Privacy Extensions for Stateless Address
Autoconfiguration in IPv6.";
reference
"RFC 4941: Privacy Extensions for Stateless Address
Autoconfiguration in IPv6";
}
/*
* Typedefs
*/
typedef ip-address-origin {
type enumeration {
enum other {
description
"None of the following.";
}
enum static {
description
"Indicates that the address has been statically
configured - for example, using NETCONF or a Command Line
Interface.";
}
enum dhcp {
description
"Indicates an address that has been assigned to this
system by a DHCP server.";
}
enum link-layer {
description
"Indicates an address created by IPv6 stateless
autoconfiguration that embeds a link-layer address in its
interface identifier.";
}
enum random {
description
"Indicates an address chosen by the system at
random, e.g., an IPv4 address within 169.254/16, an
RFC 4941 temporary address, or an RFC 7217 semantically
opaque address.";
reference
"RFC 4941: Privacy Extensions for Stateless Address
Autoconfiguration in IPv6
RFC 7217: A Method for Generating Semantically Opaque
Interface Identifiers with IPv6 Stateless
Address Autoconfiguration (SLAAC)";
}
}
description
"The origin of an address.";
}
typedef neighbor-origin {
type enumeration {
enum other {
description
"None of the following.";
}
enum static {
description
"Indicates that the mapping has been statically
configured - for example, using NETCONF or a Command Line
Interface.";
}
enum dynamic {
description
"Indicates that the mapping has been dynamically resolved
using, e.g., IPv4 ARP or the IPv6 Neighbor Discovery
protocol.";
}
}
description
"The origin of a neighbor entry.";
}
/*
* Configuration data nodes
*/
augment "/if:interfaces/if:interface" {
description
"Parameters for configuring IP on interfaces.
If an interface is not capable of running IP, the server
must not allow the client to configure these parameters.";
container ipv4 {
presence
"Enables IPv4 unless the 'enabled' leaf
(which defaults to 'true') is set to 'false'";
description
"Parameters for the IPv4 address family.";
leaf enabled {
type boolean;
default true;
description
"Controls whether IPv4 is enabled or disabled on this
interface. When IPv4 is enabled, this interface is
connected to an IPv4 stack, and the interface can send
and receive IPv4 packets.";
}
leaf forwarding {
type boolean;
default false;
description
"Controls IPv4 packet forwarding of datagrams received by,
but not addressed to, this interface. IPv4 routers
forward datagrams. IPv4 hosts do not (except those
source-routed via the host).";
}
leaf mtu {
type uint16 {
range "68..max";
}
units octets;
description
"The size, in octets, of the largest IPv4 packet that the
interface will send and receive.
The server may restrict the allowed values for this leaf,
depending on the interface's type.
If this leaf is not configured, the operationally used MTU
depends on the interface's type.";
reference
"RFC 791: Internet Protocol";
}
list address {
key "ip";
description
"The list of configured IPv4 addresses on the interface.";
leaf ip {
type inet:ipv4-address-no-zone;
description
"The IPv4 address on the interface.";
}
choice subnet {
mandatory true;
description
"The subnet can be specified as a prefix-length, or,
if the server supports non-contiguous netmasks, as
a netmask.";
leaf prefix-length {
type uint8 {
range "0..32";
}
description
"The length of the subnet prefix.";
}
leaf netmask {
if-feature ipv4-non-contiguous-netmasks;
type yang:dotted-quad;
description
"The subnet specified as a netmask.";
}
}
}
list neighbor {
key "ip";
description
"A list of mappings from IPv4 addresses to
link-layer addresses.
Entries in this list are used as static entries in the
ARP Cache.";
reference
"RFC 826: An Ethernet Address Resolution Protocol";
leaf ip {
type inet:ipv4-address-no-zone;
description
"The IPv4 address of the neighbor node.";
}
leaf link-layer-address {
type yang:phys-address;
mandatory true;
description
"The link-layer address of the neighbor node.";
}
}
}
container ipv6 {
presence
"Enables IPv6 unless the 'enabled' leaf
(which defaults to 'true') is set to 'false'";
description
"Parameters for the IPv6 address family.";
leaf enabled {
type boolean;
default true;
description
"Controls whether IPv6 is enabled or disabled on this
interface. When IPv6 is enabled, this interface is
connected to an IPv6 stack, and the interface can send
and receive IPv6 packets.";
}
leaf forwarding {
type boolean;
default false;
description
"Controls IPv6 packet forwarding of datagrams received by,
but not addressed to, this interface. IPv6 routers
forward datagrams. IPv6 hosts do not (except those
source-routed via the host).";
reference
"RFC 4861: Neighbor Discovery for IP version 6 (IPv6)
Section 6.2.1, IsRouter";
}
leaf mtu {
type uint32 {
range "1280..max";
}
units octets;
description
"The size, in octets, of the largest IPv6 packet that the
interface will send and receive.
The server may restrict the allowed values for this leaf,
depending on the interface's type.
If this leaf is not configured, the operationally used MTU
depends on the interface's type.";
reference
"RFC 2460: Internet Protocol, Version 6 (IPv6) Specification
Section 5";
}
list address {
key "ip";
description
"The list of configured IPv6 addresses on the interface.";
leaf ip {
type inet:ipv6-address-no-zone;
description
"The IPv6 address on the interface.";
}
leaf prefix-length {
type uint8 {
range "0..128";
}
mandatory true;
description
"The length of the subnet prefix.";
}
}
list neighbor {
key "ip";
description
"A list of mappings from IPv6 addresses to
link-layer addresses.
Entries in this list are used as static entries in the
Neighbor Cache.";
reference
"RFC 4861: Neighbor Discovery for IP version 6 (IPv6)";
leaf ip {
type inet:ipv6-address-no-zone;
description
"The IPv6 address of the neighbor node.";
}
leaf link-layer-address {
type yang:phys-address;
mandatory true;
description
"The link-layer address of the neighbor node.";
}
}
leaf dup-addr-detect-transmits {
type uint32;
default 1;
description
"The number of consecutive Neighbor Solicitation messages
sent while performing Duplicate Address Detection on a
tentative address. A value of zero indicates that
Duplicate Address Detection is not performed on
tentative addresses. A value of one indicates a single
transmission with no follow-up retransmissions.";
reference
"RFC 4862: IPv6 Stateless Address Autoconfiguration";
}
container autoconf {
description
"Parameters to control the autoconfiguration of IPv6
addresses, as described in RFC 4862.";
reference
"RFC 4862: IPv6 Stateless Address Autoconfiguration";
leaf create-global-addresses {
type boolean;
default true;
description
"If enabled, the host creates global addresses as
described in RFC 4862.";
reference
"RFC 4862: IPv6 Stateless Address Autoconfiguration
Section 5.5";
}
leaf create-temporary-addresses {
if-feature ipv6-privacy-autoconf;
type boolean;
default false;
description
"If enabled, the host creates temporary addresses as
described in RFC 4941.";
reference
"RFC 4941: Privacy Extensions for Stateless Address
Autoconfiguration in IPv6";
}
leaf temporary-valid-lifetime {
if-feature ipv6-privacy-autoconf;
type uint32;
units "seconds";
default 604800;
description
"The time period during which the temporary address
is valid.";
reference
"RFC 4941: Privacy Extensions for Stateless Address
Autoconfiguration in IPv6
- TEMP_VALID_LIFETIME";
}
leaf temporary-preferred-lifetime {
if-feature ipv6-privacy-autoconf;
type uint32;
units "seconds";
default 86400;
description
"The time period during which the temporary address is
preferred.";
reference
"RFC 4941: Privacy Extensions for Stateless Address
Autoconfiguration in IPv6
- TEMP_PREFERRED_LIFETIME";
}
}
}
}
/*
* Operational state data nodes
*/
augment "/if:interfaces-state/if:interface" {
description
"Data nodes for the operational state of IP on interfaces.";
container ipv4 {
presence "Present if IPv4 is enabled on this interface";
config false;
description
"Interface-specific parameters for the IPv4 address family.";
leaf forwarding {
type boolean;
description
"Indicates whether IPv4 packet forwarding is enabled or
disabled on this interface.";
}
leaf mtu {
type uint16 {
range "68..max";
}
units octets;
description
"The size, in octets, of the largest IPv4 packet that the
interface will send and receive.";
reference
"RFC 791: Internet Protocol";
}
list address {
key "ip";
description
"The list of IPv4 addresses on the interface.";
leaf ip {
type inet:ipv4-address-no-zone;
description
"The IPv4 address on the interface.";
}
choice subnet {
description
"The subnet can be specified as a prefix-length, or,
if the server supports non-contiguous netmasks, as
a netmask.";
leaf prefix-length {
type uint8 {
range "0..32";
}
description
"The length of the subnet prefix.";
}
leaf netmask {
if-feature ipv4-non-contiguous-netmasks;
type yang:dotted-quad;
description
"The subnet specified as a netmask.";
}
}
leaf origin {
type ip-address-origin;
description
"The origin of this address.";
}
}
list neighbor {
key "ip";
description
"A list of mappings from IPv4 addresses to
link-layer addresses.
This list represents the ARP Cache.";
reference
"RFC 826: An Ethernet Address Resolution Protocol";
leaf ip {
type inet:ipv4-address-no-zone;
description
"The IPv4 address of the neighbor node.";
}
leaf link-layer-address {
type yang:phys-address;
description
"The link-layer address of the neighbor node.";
}
leaf origin {
type neighbor-origin;
description
"The origin of this neighbor entry.";
}
}
}
container ipv6 {
presence "Present if IPv6 is enabled on this interface";
config false;
description
"Parameters for the IPv6 address family.";
leaf forwarding {
type boolean;
default false;
description
"Indicates whether IPv6 packet forwarding is enabled or
disabled on this interface.";
reference
"RFC 4861: Neighbor Discovery for IP version 6 (IPv6)
Section 6.2.1, IsRouter";
}
leaf mtu {
type uint32 {
range "1280..max";
}
units octets;
description
"The size, in octets, of the largest IPv6 packet that the
interface will send and receive.";
reference
"RFC 2460: Internet Protocol, Version 6 (IPv6) Specification
Section 5";
}
list address {
key "ip";
description
"The list of IPv6 addresses on the interface.";
leaf ip {
type inet:ipv6-address-no-zone;
description
"The IPv6 address on the interface.";
}
leaf prefix-length {
type uint8 {
range "0..128";
}
mandatory true;
description
"The length of the subnet prefix.";
}
leaf origin {
type ip-address-origin;
description
"The origin of this address.";
}
leaf status {
type enumeration {
enum preferred {
description
"This is a valid address that can appear as the
destination or source address of a packet.";
}
enum deprecated {
description
"This is a valid but deprecated address that should
no longer be used as a source address in new
communications, but packets addressed to such an
address are processed as expected.";
}
enum invalid {
description
"This isn't a valid address, and it shouldn't appear
as the destination or source address of a packet.";
}
enum inaccessible {
description
"The address is not accessible because the interface
to which this address is assigned is not
operational.";
}
enum unknown {
description
"The status cannot be determined for some reason.";
}
enum tentative {
description
"The uniqueness of the address on the link is being
verified. Addresses in this state should not be
used for general communication and should only be
used to determine the uniqueness of the address.";
}
enum duplicate {
description
"The address has been determined to be non-unique on
the link and so must not be used.";
}
enum optimistic {
description
"The address is available for use, subject to
restrictions, while its uniqueness on a link is
being verified.";
}
}
description
"The status of an address. Most of the states correspond
to states from the IPv6 Stateless Address
Autoconfiguration protocol.";
reference
"RFC 4293: Management Information Base for the
Internet Protocol (IP)
- IpAddressStatusTC
RFC 4862: IPv6 Stateless Address Autoconfiguration";
}
}
list neighbor {
key "ip";
description
"A list of mappings from IPv6 addresses to
link-layer addresses.
This list represents the Neighbor Cache.";
reference
"RFC 4861: Neighbor Discovery for IP version 6 (IPv6)";
leaf ip {
type inet:ipv6-address-no-zone;
description
"The IPv6 address of the neighbor node.";
}
leaf link-layer-address {
type yang:phys-address;
description
"The link-layer address of the neighbor node.";
}
leaf origin {
type neighbor-origin;
description
"The origin of this neighbor entry.";
}
leaf is-router {
type empty;
description
"Indicates that the neighbor node acts as a router.";
}
leaf state {
type enumeration {
enum incomplete {
description
"Address resolution is in progress, and the link-layer
address of the neighbor has not yet been
determined.";
}
enum reachable {
description
"Roughly speaking, the neighbor is known to have been
reachable recently (within tens of seconds ago).";
}
enum stale {
description
"The neighbor is no longer known to be reachable, but
until traffic is sent to the neighbor no attempt
should be made to verify its reachability.";
}
enum delay {
description
"The neighbor is no longer known to be reachable, and
traffic has recently been sent to the neighbor.
Rather than probe the neighbor immediately, however,
delay sending probes for a short while in order to
give upper-layer protocols a chance to provide
reachability confirmation.";
}
enum probe {
description
"The neighbor is no longer known to be reachable, and
unicast Neighbor Solicitation probes are being sent
to verify reachability.";
}
}
description
"The Neighbor Unreachability Detection state of this
entry.";
reference
"RFC 4861: Neighbor Discovery for IP version 6 (IPv6)
Section 7.3.2";
}
}
}
}
}

View file

@ -1,555 +0,0 @@
module ietf-netconf-monitoring {
namespace "urn:ietf:params:xml:ns:yang:ietf-netconf-monitoring";
prefix "ncm";
import ietf-yang-types { prefix yang; }
import ietf-inet-types { prefix inet; }
organization
"IETF NETCONF (Network Configuration) Working Group";
contact
"WG Web: <http://tools.ietf.org/wg/netconf/>
WG List: <mailto:netconf@ietf.org>
WG Chair: Mehmet Ersue
<mailto:mehmet.ersue@nsn.com>
WG Chair: Bert Wijnen
<mailto:bertietf@bwijnen.net>
Editor: Mark Scott
<mailto:mark.scott@ericsson.com>
Editor: Martin Bjorklund
<mailto:mbj@tail-f.com>";
description
"NETCONF Monitoring Module.
All elements in this module are read-only.
Copyright (c) 2010 IETF Trust and the persons identified as
authors of the code. All rights reserved.
Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject
to the license terms contained in, the Simplified BSD
License set forth in Section 4.c of the IETF Trust's
Legal Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info).
This version of this YANG module is part of RFC 6022; see
the RFC itself for full legal notices.";
revision 2010-10-04 {
description
"Initial revision.";
reference
"RFC 6022: YANG Module for NETCONF Monitoring";
}
typedef netconf-datastore-type {
type enumeration {
enum running;
enum candidate;
enum startup;
}
description
"Enumeration of possible NETCONF datastore types.";
reference
"RFC 4741: NETCONF Configuration Protocol";
}
identity transport {
description
"Base identity for NETCONF transport types.";
}
identity netconf-ssh {
base transport;
description
"NETCONF over Secure Shell (SSH).";
reference
"RFC 4742: Using the NETCONF Configuration Protocol
over Secure SHell (SSH)";
}
identity netconf-soap-over-beep {
base transport;
description
"NETCONF over Simple Object Access Protocol (SOAP) over
Blocks Extensible Exchange Protocol (BEEP).";
reference
"RFC 4743: Using NETCONF over the Simple Object
Access Protocol (SOAP)";
}
identity netconf-soap-over-https {
base transport;
description
"NETCONF over Simple Object Access Protocol (SOAP)
over Hypertext Transfer Protocol Secure (HTTPS).";
reference
"RFC 4743: Using NETCONF over the Simple Object
Access Protocol (SOAP)";
}
identity netconf-beep {
base transport;
description
"NETCONF over Blocks Extensible Exchange Protocol (BEEP).";
reference
"RFC 4744: Using the NETCONF Protocol over the
Blocks Extensible Exchange Protocol (BEEP)";
}
identity netconf-tls {
base transport;
description
"NETCONF over Transport Layer Security (TLS).";
reference
"RFC 5539: NETCONF over Transport Layer Security (TLS)";
}
identity schema-format {
description
"Base identity for data model schema languages.";
}
identity xsd {
base schema-format;
description
"W3C XML Schema Definition.";
reference
"W3C REC REC-xmlschema-1-20041028:
XML Schema Part 1: Structures";
}
identity yang {
base schema-format;
description
"The YANG data modeling language for NETCONF.";
reference
"RFC 6020: YANG - A Data Modeling Language for the
Network Configuration Protocol (NETCONF)";
}
identity yin {
base schema-format;
description
"The YIN syntax for YANG.";
reference
"RFC 6020: YANG - A Data Modeling Language for the
Network Configuration Protocol (NETCONF)";
}
identity rng {
base schema-format;
description
"Regular Language for XML Next Generation (RELAX NG).";
reference
"ISO/IEC 19757-2:2008: RELAX NG";
}
identity rnc {
base schema-format;
description
"Relax NG Compact Syntax";
reference
"ISO/IEC 19757-2:2008: RELAX NG";
}
grouping common-counters {
description
"Counters that exist both per session, and also globally,
accumulated from all sessions.";
leaf in-rpcs {
type yang:zero-based-counter32;
description
"Number of correct <rpc> messages received.";
}
leaf in-bad-rpcs {
type yang:zero-based-counter32;
description
"Number of messages received when an <rpc> message was expected,
that were not correct <rpc> messages. This includes XML parse
errors and errors on the rpc layer.";
}
leaf out-rpc-errors {
type yang:zero-based-counter32;
description
"Number of <rpc-reply> messages sent that contained an
<rpc-error> element.";
}
leaf out-notifications {
type yang:zero-based-counter32;
description
"Number of <notification> messages sent.";
}
}
container netconf-state {
config false;
description
"The netconf-state container is the root of the monitoring
data model.";
container capabilities {
description
"Contains the list of NETCONF capabilities supported by the
server.";
leaf-list capability {
type inet:uri;
description
"List of NETCONF capabilities supported by the server.";
}
}
container datastores {
description
"Contains the list of NETCONF configuration datastores.";
list datastore {
key name;
description
"List of NETCONF configuration datastores supported by
the NETCONF server and related information.";
leaf name {
type netconf-datastore-type;
description
"Name of the datastore associated with this list entry.";
}
container locks {
presence
"This container is present only if the datastore
is locked.";
description
"The NETCONF <lock> and <partial-lock> operations allow
a client to lock specific resources in a datastore. The
NETCONF server will prevent changes to the locked
resources by all sessions except the one that acquired
the lock(s).
Monitoring information is provided for each datastore
entry including details such as the session that acquired
the lock, the type of lock (global or partial) and the
list of locked resources. Multiple locks per datastore
are supported.";
grouping lock-info {
description
"Lock related parameters, common to both global and
partial locks.";
leaf locked-by-session {
type uint32;
mandatory true;
description
"The session ID of the session that has locked
this resource. Both a global lock and a partial
lock MUST contain the NETCONF session-id.
If the lock is held by a session that is not managed
by the NETCONF server (e.g., a CLI session), a session
id of 0 (zero) is reported.";
reference
"RFC 4741: NETCONF Configuration Protocol";
}
leaf locked-time {
type yang:date-and-time;
mandatory true;
description
"The date and time of when the resource was
locked.";
}
}
choice lock-type {
description
"Indicates if a global lock or a set of partial locks
are set.";
container global-lock {
description
"Present if the global lock is set.";
uses lock-info;
}
list partial-lock {
key lock-id;
description
"List of partial locks.";
reference
"RFC 5717: Partial Lock Remote Procedure Call (RPC) for
NETCONF";
leaf lock-id {
type uint32;
description
"This is the lock id returned in the <partial-lock>
response.";
}
uses lock-info;
leaf-list select {
type yang:xpath1.0;
min-elements 1;
description
"The xpath expression that was used to request
the lock. The select expression indicates the
original intended scope of the lock.";
}
leaf-list locked-node {
type instance-identifier;
description
"The list of instance-identifiers (i.e., the
locked nodes).
The scope of the partial lock is defined by the list
of locked nodes.";
}
}
}
}
}
}
container schemas {
description
"Contains the list of data model schemas supported by the
server.";
list schema {
key "identifier version format";
description
"List of data model schemas supported by the server.";
leaf identifier {
type string;
description
"Identifier to uniquely reference the schema. The
identifier is used in the <get-schema> operation and may
be used for other purposes such as file retrieval.
For modeling languages that support or require a data
model name (e.g., YANG module name) the identifier MUST
match that name. For YANG data models, the identifier is
the name of the module or submodule. In other cases, an
identifier such as a filename MAY be used instead.";
}
leaf version {
type string;
description
"Version of the schema supported. Multiple versions MAY be
supported simultaneously by a NETCONF server. Each
version MUST be reported individually in the schema list,
i.e., with same identifier, possibly different location,
but different version.
For YANG data models, version is the value of the most
recent YANG 'revision' statement in the module or
submodule, or the empty string if no 'revision' statement
is present.";
}
leaf format {
type identityref {
base schema-format;
}
description
"The data modeling language the schema is written
in (currently xsd, yang, yin, rng, or rnc).
For YANG data models, 'yang' format MUST be supported and
'yin' format MAY also be provided.";
}
leaf namespace {
type inet:uri;
mandatory true;
description
"The XML namespace defined by the data model.
For YANG data models, this is the module's namespace.
If the list entry describes a submodule, this field
contains the namespace of the module to which the
submodule belongs.";
}
leaf-list location {
type union {
type enumeration {
enum "NETCONF";
}
type inet:uri;
}
description
"One or more locations from which the schema can be
retrieved. This list SHOULD contain at least one
entry per schema.
A schema entry may be located on a remote file system
(e.g., reference to file system for ftp retrieval) or
retrieved directly from a server supporting the
<get-schema> operation (denoted by the value 'NETCONF').";
}
}
}
container sessions {
description
"The sessions container includes session-specific data for
NETCONF management sessions. The session list MUST include
all currently active NETCONF sessions.";
list session {
key session-id;
description
"All NETCONF sessions managed by the NETCONF server
MUST be reported in this list.";
leaf session-id {
type uint32 {
range "1..max";
}
description
"Unique identifier for the session. This value is the
NETCONF session identifier, as defined in RFC 4741.";
reference
"RFC 4741: NETCONF Configuration Protocol";
}
leaf transport {
type identityref {
base transport;
}
mandatory true;
description
"Identifies the transport for each session, e.g.,
'netconf-ssh', 'netconf-soap', etc.";
}
leaf username {
type string;
mandatory true;
description
"The username is the client identity that was authenticated
by the NETCONF transport protocol. The algorithm used to
derive the username is NETCONF transport protocol specific
and in addition specific to the authentication mechanism
used by the NETCONF transport protocol.";
}
leaf source-host {
type inet:host;
description
"Host identifier of the NETCONF client. The value
returned is implementation specific (e.g., hostname,
IPv4 address, IPv6 address)";
}
leaf login-time {
type yang:date-and-time;
mandatory true;
description
"Time at the server at which the session was established.";
}
uses common-counters {
description
"Per-session counters. Zero based with following reset
behaviour:
- at start of a session
- when max value is reached";
}
}
}
container statistics {
description
"Statistical data pertaining to the NETCONF server.";
leaf netconf-start-time {
type yang:date-and-time;
description
"Date and time at which the management subsystem was
started.";
}
leaf in-bad-hellos {
type yang:zero-based-counter32;
description
"Number of sessions silently dropped because an
invalid <hello> message was received. This includes <hello>
messages with a 'session-id' attribute, bad namespace, and
bad capability declarations.";
}
leaf in-sessions {
type yang:zero-based-counter32;
description
"Number of sessions started. This counter is incremented
when a <hello> message with a <session-id> is sent.
'in-sessions' - 'in-bad-hellos' =
'number of correctly started netconf sessions'";
}
leaf dropped-sessions {
type yang:zero-based-counter32;
description
"Number of sessions that were abnormally terminated, e.g.,
due to idle timeout or transport close. This counter is not
incremented when a session is properly closed by a
<close-session> operation, or killed by a <kill-session>
operation.";
}
uses common-counters {
description
"Global counters, accumulated from all sessions.
Zero based with following reset behaviour:
- re-initialization of NETCONF server
- when max value is reached";
}
}
}
rpc get-schema {
description
"This operation is used to retrieve a schema from the
NETCONF server.
Positive Response:
The NETCONF server returns the requested schema.
Negative Response:
If requested schema does not exist, the <error-tag> is
'invalid-value'.
If more than one schema matches the requested parameters, the
<error-tag> is 'operation-failed', and <error-app-tag> is
'data-not-unique'.";
input {
leaf identifier {
type string;
mandatory true;
description
"Identifier for the schema list entry.";
}
leaf version {
type string;
description
"Version of the schema requested. If this parameter is not
present, and more than one version of the schema exists on
the server, a 'data-not-unique' error is returned, as
described above.";
}
leaf format {
type identityref {
base schema-format;
}
description
"The data modeling language of the schema. If this
parameter is not present, and more than one formats of
the schema exists on the server, a 'data-not-unique' error
is returned, as described above.";
}
}
output {
anyxml data {
description
"Contains the schema content.";
}
}
}
}

View file

@ -1,684 +0,0 @@
module ietf-routing {
yang-version "1.1";
namespace "urn:ietf:params:xml:ns:yang:ietf-routing";
prefix "rt";
import ietf-yang-types {
prefix "yang";
}
import ietf-interfaces {
prefix "if";
description
"An 'ietf-interfaces' module version that is compatible with
the Network Management Datastore Architecture (NMDA)
is required.";
}
organization
"IETF NETMOD (Network Modeling) Working Group";
contact
"WG Web: <https://datatracker.ietf.org/wg/netmod/>
WG List: <mailto:rtgwg@ietf.org>
Editor: Ladislav Lhotka
<mailto:lhotka@nic.cz>
Acee Lindem
<mailto:acee@cisco.com>
Yingzhen Qu
<mailto:yingzhen.qu@huawei.com>";
description
"This YANG module defines essential components for the management
of a routing subsystem. The model fully conforms to the Network
Management Datastore Architecture (NMDA).
Copyright (c) 2018 IETF Trust and the persons
identified as authors of the code. All rights reserved.
Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject
to the license terms contained in, the Simplified BSD License
set forth in Section 4.c of the IETF Trust's Legal Provisions
Relating to IETF Documents
(https://trustee.ietf.org/license-info).
This version of this YANG module is part of RFC 8349; see
the RFC itself for full legal notices.";
revision 2018-03-13 {
description
"Network Management Datastore Architecture (NMDA) revision.";
reference
"RFC 8349: A YANG Data Model for Routing Management
(NMDA Version)";
}
revision 2016-11-04 {
description
"Initial revision.";
reference
"RFC 8022: A YANG Data Model for Routing Management";
}
/* Features */
feature multiple-ribs {
description
"This feature indicates that the server supports
user-defined RIBs.
Servers that do not advertise this feature SHOULD provide
exactly one system-controlled RIB per supported address family
and also make it the default RIB. This RIB then appears as an
entry in the list '/routing/ribs/rib'.";
}
feature router-id {
description
"This feature indicates that the server supports an explicit
32-bit router ID that is used by some routing protocols.
Servers that do not advertise this feature set a router ID
algorithmically, usually to one of the configured IPv4
addresses. However, this algorithm is implementation
specific.";
}
/* Identities */
identity address-family {
description
"Base identity from which identities describing address
families are derived.";
}
identity ipv4 {
base address-family;
description
"This identity represents an IPv4 address family.";
}
identity ipv6 {
base address-family;
description
"This identity represents an IPv6 address family.";
}
identity control-plane-protocol {
description
"Base identity from which control-plane protocol identities are
derived.";
}
identity routing-protocol {
base control-plane-protocol;
description
"Identity from which Layer 3 routing protocol identities are
derived.";
}
identity direct {
base routing-protocol;
description
"Routing pseudo-protocol that provides routes to directly
connected networks.";
}
identity static {
base routing-protocol;
description
"'Static' routing pseudo-protocol.";
}
/* Type Definitions */
typedef route-preference {
type uint32;
description
"This type is used for route preferences.";
}
/* Groupings */
grouping address-family {
description
"This grouping provides a leaf identifying an address
family.";
leaf address-family {
type identityref {
base address-family;
}
mandatory true;
description
"Address family.";
}
}
grouping router-id {
description
"This grouping provides a router ID.";
leaf router-id {
type yang:dotted-quad;
description
"A 32-bit number in the form of a dotted quad that is used by
some routing protocols identifying a router.";
reference
"RFC 2328: OSPF Version 2";
}
}
grouping special-next-hop {
description
"This grouping provides a leaf with an enumeration of special
next hops.";
leaf special-next-hop {
type enumeration {
enum blackhole {
description
"Silently discard the packet.";
}
enum unreachable {
description
"Discard the packet and notify the sender with an error
message indicating that the destination host is
unreachable.";
}
enum prohibit {
description
"Discard the packet and notify the sender with an error
message indicating that the communication is
administratively prohibited.";
}
enum receive {
description
"The packet will be received by the local system.";
}
}
description
"Options for special next hops.";
}
}
grouping next-hop-content {
description
"Generic parameters of next hops in static routes.";
choice next-hop-options {
mandatory true;
description
"Options for next hops in static routes.
It is expected that further cases will be added through
augments from other modules.";
case simple-next-hop {
description
"This case represents a simple next hop consisting of the
next-hop address and/or outgoing interface.
Modules for address families MUST augment this case with a
leaf containing a next-hop address of that address
family.";
leaf outgoing-interface {
type if:interface-ref;
description
"Name of the outgoing interface.";
}
}
case special-next-hop {
uses special-next-hop;
}
case next-hop-list {
container next-hop-list {
description
"Container for multiple next hops.";
list next-hop {
key "index";
description
"An entry in a next-hop list.
Modules for address families MUST augment this list
with a leaf containing a next-hop address of that
address family.";
leaf index {
type string;
description
"A user-specified identifier utilized to uniquely
reference the next-hop entry in the next-hop list.
The value of this index has no semantic meaning
other than for referencing the entry.";
}
leaf outgoing-interface {
type if:interface-ref;
description
"Name of the outgoing interface.";
}
}
}
}
}
}
grouping next-hop-state-content {
description
"Generic state parameters of next hops.";
choice next-hop-options {
mandatory true;
description
"Options for next hops.
It is expected that further cases will be added through
augments from other modules, e.g., for recursive
next hops.";
case simple-next-hop {
description
"This case represents a simple next hop consisting of the
next-hop address and/or outgoing interface.
Modules for address families MUST augment this case with a
leaf containing a next-hop address of that address
family.";
leaf outgoing-interface {
type if:interface-ref;
description
"Name of the outgoing interface.";
}
}
case special-next-hop {
uses special-next-hop;
}
case next-hop-list {
container next-hop-list {
description
"Container for multiple next hops.";
list next-hop {
description
"An entry in a next-hop list.
Modules for address families MUST augment this list
with a leaf containing a next-hop address of that
address family.";
leaf outgoing-interface {
type if:interface-ref;
description
"Name of the outgoing interface.";
}
}
}
}
}
}
grouping route-metadata {
description
"Common route metadata.";
leaf source-protocol {
type identityref {
base routing-protocol;
}
mandatory true;
description
"Type of the routing protocol from which the route
originated.";
}
leaf active {
type empty;
description
"The presence of this leaf indicates that the route is
preferred among all routes in the same RIB that have the
same destination prefix.";
}
leaf last-updated {
type yang:date-and-time;
description
"Timestamp of the last modification of the route. If the
route was never modified, it is the time when the route was
inserted into the RIB.";
}
}
/* Data nodes */
container routing {
description
"Configuration parameters for the routing subsystem.";
uses router-id {
if-feature "router-id";
description
"Support for the global router ID. Routing protocols
that use a router ID can use this parameter or override it
with another value.";
}
container interfaces {
config false;
description
"Network-layer interfaces used for routing.";
leaf-list interface {
type if:interface-ref;
description
"Each entry is a reference to the name of a configured
network-layer interface.";
}
}
container control-plane-protocols {
description
"Support for control-plane protocol instances.";
list control-plane-protocol {
key "type name";
description
"Each entry contains a control-plane protocol instance.";
leaf type {
type identityref {
base control-plane-protocol;
}
description
"Type of the control-plane protocol -- an identity
derived from the 'control-plane-protocol'
base identity.";
}
leaf name {
type string;
description
"An arbitrary name of the control-plane protocol
instance.";
}
leaf description {
type string;
description
"Textual description of the control-plane protocol
instance.";
}
container static-routes {
when "derived-from-or-self(../type, 'rt:static')" {
description
"This container is only valid for the 'static' routing
protocol.";
}
description
"Support for the 'static' pseudo-protocol.
Address-family-specific modules augment this node with
their lists of routes.";
}
}
}
container ribs {
description
"Support for RIBs.";
list rib {
key "name";
description
"Each entry contains a configuration for a RIB identified
by the 'name' key.
Entries having the same key as a system-controlled entry
in the list '/routing/ribs/rib' are used for
configuring parameters of that entry. Other entries
define additional user-controlled RIBs.";
leaf name {
type string;
description
"The name of the RIB.
For system-controlled entries, the value of this leaf
must be the same as the name of the corresponding entry
in the operational state.
For user-controlled entries, an arbitrary name can be
used.";
}
uses address-family {
description
"The address family of the system-controlled RIB.";
}
leaf default-rib {
if-feature "multiple-ribs";
type boolean;
default "true";
config false;
description
"This flag has the value of 'true' if and only if the RIB
is the default RIB for the given address family.
By default, control-plane protocols place their routes
in the default RIBs.";
}
container routes {
config false;
description
"Current contents of the RIB.";
list route {
description
"A RIB route entry. This data node MUST be augmented
with information specific to routes of each address
family.";
leaf route-preference {
type route-preference;
description
"This route attribute, also known as 'administrative
distance', allows for selecting the preferred route
among routes with the same destination prefix. A
smaller value indicates a route that is
more preferred.";
}
container next-hop {
description
"Route's next-hop attribute.";
uses next-hop-state-content;
}
uses route-metadata;
}
}
action active-route {
description
"Return the active RIB route that is used for the
destination address.
Address-family-specific modules MUST augment input
parameters with a leaf named 'destination-address'.";
output {
container route {
description
"The active RIB route for the specified destination.
If no route exists in the RIB for the destination
address, no output is returned.
Address-family-specific modules MUST augment this
container with appropriate route contents.";
container next-hop {
description
"Route's next-hop attribute.";
uses next-hop-state-content;
}
uses route-metadata;
}
}
}
leaf description {
type string;
description
"Textual description of the RIB.";
}
}
}
}
/*
* The subsequent data nodes are obviated and obsoleted
* by the Network Management Datastore Architecture
* as described in RFC 8342.
*/
container routing-state {
config false;
status obsolete;
description
"State data of the routing subsystem.";
uses router-id {
status obsolete;
description
"Global router ID.
It may be either configured or assigned algorithmically by
the implementation.";
}
container interfaces {
status obsolete;
description
"Network-layer interfaces used for routing.";
leaf-list interface {
type if:interface-state-ref;
status obsolete;
description
"Each entry is a reference to the name of a configured
network-layer interface.";
}
}
container control-plane-protocols {
status obsolete;
description
"Container for the list of routing protocol instances.";
list control-plane-protocol {
key "type name";
status obsolete;
description
"State data of a control-plane protocol instance.
An implementation MUST provide exactly one
system-controlled instance of the 'direct'
pseudo-protocol. Instances of other control-plane
protocols MAY be created by configuration.";
leaf type {
type identityref {
base control-plane-protocol;
}
status obsolete;
description
"Type of the control-plane protocol.";
}
leaf name {
type string;
status obsolete;
description
"The name of the control-plane protocol instance.
For system-controlled instances, this name is
persistent, i.e., it SHOULD NOT change across
reboots.";
}
}
}
container ribs {
status obsolete;
description
"Container for RIBs.";
list rib {
key "name";
min-elements 1;
status obsolete;
description
"Each entry represents a RIB identified by the 'name'
key. All routes in a RIB MUST belong to the same address
family.
An implementation SHOULD provide one system-controlled
default RIB for each supported address family.";
leaf name {
type string;
status obsolete;
description
"The name of the RIB.";
}
uses address-family {
status obsolete;
description
"The address family of the RIB.";
}
leaf default-rib {
if-feature "multiple-ribs";
type boolean;
default "true";
status obsolete;
description
"This flag has the value of 'true' if and only if the
RIB is the default RIB for the given address family.
By default, control-plane protocols place their routes
in the default RIBs.";
}
container routes {
status obsolete;
description
"Current contents of the RIB.";
list route {
status obsolete;
description
"A RIB route entry. This data node MUST be augmented
with information specific to routes of each address
family.";
leaf route-preference {
type route-preference;
status obsolete;
description
"This route attribute, also known as 'administrative
distance', allows for selecting the preferred route
among routes with the same destination prefix. A
smaller value indicates a route that is
more preferred.";
}
container next-hop {
status obsolete;
description
"Route's next-hop attribute.";
uses next-hop-state-content {
status obsolete;
description
"Route's next-hop attribute operational state.";
}
}
uses route-metadata {
status obsolete;
description
"Route metadata.";
}
}
}
action active-route {
status obsolete;
description
"Return the active RIB route that is used for the
destination address.
Address-family-specific modules MUST augment input
parameters with a leaf named 'destination-address'.";
output {
container route {
status obsolete;
description
"The active RIB route for the specified
destination.
If no route exists in the RIB for the destination
address, no output is returned.
Address-family-specific modules MUST augment this
container with appropriate route contents.";
container next-hop {
status obsolete;
description
"Route's next-hop attribute.";
uses next-hop-state-content {
status obsolete;
description
"Active route state data.";
}
}
uses route-metadata {
status obsolete;
description
"Active route metadata.";
}
}
}
}
}
}
}
}