Merge branch 'master' of https://github.com/clicon/clixon
This commit is contained in:
commit
70221742f7
26 changed files with 1314 additions and 314 deletions
|
|
@ -495,6 +495,7 @@ xml_yang_validate_rpc(cxobj *xrpc,
|
|||
* @retval 1 Validation OK
|
||||
* @retval 0 Validation failed (cbret set)
|
||||
* @retval -1 Error
|
||||
* Check if xt is part of valid choice
|
||||
*/
|
||||
static int
|
||||
check_choice(cxobj *xt,
|
||||
|
|
@ -502,27 +503,59 @@ check_choice(cxobj *xt,
|
|||
cbuf *cbret)
|
||||
{
|
||||
int retval = -1;
|
||||
yang_stmt *yc;
|
||||
yang_stmt *y;
|
||||
yang_stmt *ytp; /* yt:s parent */
|
||||
yang_stmt *ytcase = NULL; /* yt:s parent case if any */
|
||||
yang_stmt *ytchoice = NULL;
|
||||
yang_stmt *yp;
|
||||
cxobj *x;
|
||||
cxobj *xp;
|
||||
|
||||
if ((yc = yang_choice(yt)) == NULL)
|
||||
if ((ytp = yang_parent_get(yt)) == NULL)
|
||||
goto ok;
|
||||
/* Return OK if xt is not choice */
|
||||
switch (yang_keyword_get(ytp)){
|
||||
case Y_CASE:
|
||||
ytcase = ytp;
|
||||
ytchoice = yang_parent_get(ytp);
|
||||
break;
|
||||
case Y_CHOICE:
|
||||
ytchoice = ytp;
|
||||
break;
|
||||
default:
|
||||
goto ok; /* Not choice */
|
||||
break;
|
||||
}
|
||||
if ((xp = xml_parent(xt)) == NULL)
|
||||
goto ok;
|
||||
x = NULL; /* Find a child with same yang spec */
|
||||
x = NULL; /* Find a child with same yang spec */
|
||||
while ((x = xml_child_each(xp, x, CX_ELMNT)) != NULL) {
|
||||
if ((x != xt) &&
|
||||
(y = xml_spec(x)) != NULL &&
|
||||
(yp = yang_choice(y)) != NULL &&
|
||||
yp == yc){
|
||||
if (netconf_bad_element(cbret, "application", xml_name(x), "Element in choice statement already exists") < 0)
|
||||
goto done;
|
||||
goto fail;
|
||||
if (x == xt)
|
||||
continue;
|
||||
y = xml_spec(x);
|
||||
if (y == yt) /* eg same list */
|
||||
continue;
|
||||
yp = yang_parent_get(y);
|
||||
switch (yang_keyword_get(yp)){
|
||||
case Y_CASE:
|
||||
if (yang_parent_get(yp) != ytchoice) /* Not same choice (not releveant) */
|
||||
continue;
|
||||
if (yp == ytcase) /* same choice but different case */
|
||||
continue;
|
||||
break;
|
||||
case Y_CHOICE:
|
||||
if (yp != ytcase) /* Not same choice (not relevant) */
|
||||
continue;
|
||||
break;
|
||||
default:
|
||||
continue; /* not choice */
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (netconf_bad_element(cbret, "application", xml_name(x), "Element in choice statement already exists") < 0)
|
||||
goto done;
|
||||
goto fail;
|
||||
} /* while */
|
||||
|
||||
ok:
|
||||
retval = 1;
|
||||
done:
|
||||
|
|
@ -671,6 +704,311 @@ check_list_key(cxobj *xt,
|
|||
goto done;
|
||||
}
|
||||
|
||||
/*! New element last in list, check if already exists if sp return -1
|
||||
* @param[in] vec Vector of existing entries (new is last)
|
||||
* @param[in] i1 The new entry is placed at vec[i1]
|
||||
* @param[in] vlen Lenght of entry
|
||||
* @retval 0 OK, entry is unique
|
||||
* @retval -1 Duplicate detected
|
||||
* @note This is currently linear complexity. It could be improved by inserting new element sorted and binary search.
|
||||
*/
|
||||
static int
|
||||
check_insert_duplicate(char **vec,
|
||||
int i1,
|
||||
int vlen)
|
||||
{
|
||||
int i;
|
||||
int v;
|
||||
char *b;
|
||||
|
||||
for (i=0; i<i1; i++){
|
||||
for (v=0; v<vlen; v++){
|
||||
b = vec[i*vlen+v];
|
||||
if (b == NULL || strcmp(b, vec[i1*vlen+v]))
|
||||
break;
|
||||
}
|
||||
if (v==vlen) /* duplicate */
|
||||
break;
|
||||
}
|
||||
return i==i1?0:-1;
|
||||
}
|
||||
|
||||
/*! Given a list with unique constraint, detect duplicates
|
||||
* @param[in] x The first element in the list (on return the last)
|
||||
* @param[in] xt The parent of x
|
||||
* @param[in] y Its yang spec (Y_LIST)
|
||||
* @param[in] yu A yang unique spec (Y_UNIQUE)
|
||||
* @param[out] cbret Error buffer (set w netconf error if retval == 0)
|
||||
* @retval 1 Validation OK
|
||||
* @retval 0 Validation failed (cbret set)
|
||||
* @retval -1 Error
|
||||
* @note It would be possible to cache the vector built below
|
||||
*/
|
||||
static int
|
||||
check_unique_list(cxobj *x,
|
||||
cxobj *xt,
|
||||
yang_stmt *y,
|
||||
yang_stmt *yu,
|
||||
cbuf *cbret)
|
||||
{
|
||||
int retval = -1;
|
||||
cvec *cvk; /* unique vector */
|
||||
cg_var *cvi; /* unique node name */
|
||||
cxobj *xi;
|
||||
char **vec = NULL; /* 2xmatrix */
|
||||
int vlen;
|
||||
int i;
|
||||
int v;
|
||||
char *bi;
|
||||
|
||||
cvk = yang_cvec_get(yu);
|
||||
vlen = cvec_len(cvk); /* nr of unique elements to check */
|
||||
if ((vec = calloc(vlen*xml_child_nr(xt), sizeof(char*))) == NULL){
|
||||
clicon_err(OE_UNIX, errno, "calloc");
|
||||
goto done;
|
||||
}
|
||||
i = 0; /* x element index */
|
||||
do {
|
||||
cvi = NULL;
|
||||
v = 0; /* index in each tuple */
|
||||
while ((cvi = cvec_each(cvk, cvi)) != NULL){
|
||||
/* RFC7950: Sec 7.8.3.1: entries that do not have value for all
|
||||
* referenced leafs are not taken into account */
|
||||
if ((xi = xml_find(x, cv_string_get(cvi))) ==NULL)
|
||||
break;
|
||||
if ((bi = xml_body(xi)) == NULL)
|
||||
break;
|
||||
vec[i*vlen + v++] = bi;
|
||||
}
|
||||
if (cvi==NULL){
|
||||
/* Last element (i) is newly inserted, see if it is already there */
|
||||
if (check_insert_duplicate(vec, i, vlen) < 0){
|
||||
if (netconf_data_not_unique(cbret, x, cvk) < 0)
|
||||
goto done;
|
||||
goto fail;
|
||||
}
|
||||
}
|
||||
x = xml_child_each(xt, x, CX_ELMNT);
|
||||
i++;
|
||||
} while (x && y == xml_spec(x)); /* stop if list ends, others may follow */
|
||||
/* It would be possible to cache vec here as an optimization */
|
||||
retval = 1;
|
||||
done:
|
||||
if (vec)
|
||||
free(vec);
|
||||
return retval;
|
||||
fail:
|
||||
retval = 0;
|
||||
goto done;
|
||||
}
|
||||
|
||||
/*! Given a list, check if any min/max-elemants constraints apply
|
||||
* @param[in] x One x (the last) of a specific lis
|
||||
* @param[in] y Yang spec of x
|
||||
* @param[in] nr Number of elements (like x) in thlist
|
||||
* @param[out] cbret Error buffer (set w netconf error if retval == 0)
|
||||
* @retval 1 Validation OK
|
||||
* @retval 0 Validation failed (cbret set)
|
||||
* @retval -1 Error
|
||||
* @see RFC7950 7.7.5
|
||||
*/
|
||||
static int
|
||||
check_min_max(cxobj *x,
|
||||
yang_stmt *y,
|
||||
int nr,
|
||||
cbuf *cbret)
|
||||
{
|
||||
int retval = -1;
|
||||
yang_stmt *ymin; /* yang min */
|
||||
yang_stmt *ymax; /* yang max */
|
||||
cg_var *cv;
|
||||
|
||||
if ((ymin = yang_find(y, Y_MIN_ELEMENTS, NULL)) != NULL){
|
||||
cv = yang_cv_get(ymin);
|
||||
if (nr < cv_uint32_get(cv)){
|
||||
if (netconf_minmax_elements(cbret, x, 0) < 0)
|
||||
goto done;
|
||||
goto fail;
|
||||
}
|
||||
}
|
||||
if ((ymax = yang_find(y, Y_MAX_ELEMENTS, NULL)) != NULL){
|
||||
cv = yang_cv_get(ymax);
|
||||
if (cv_uint32_get(cv) > 0 && /* 0 means unbounded */
|
||||
nr > cv_uint32_get(cv)){
|
||||
if (netconf_minmax_elements(cbret, x, 1) < 0)
|
||||
goto done;
|
||||
goto fail;
|
||||
}
|
||||
}
|
||||
retval = 1;
|
||||
done:
|
||||
return retval;
|
||||
fail:
|
||||
retval = 0;
|
||||
goto done;
|
||||
}
|
||||
|
||||
/*! Detect unique constraint for duplicates from parent node and minmax
|
||||
* @param[in] xt XML parent (may have lists w unique constraints as child)
|
||||
* @param[out] cbret Error buffer (set w netconf error if retval == 0)
|
||||
* @retval 1 Validation OK
|
||||
* @retval 0 Validation failed (cbret set)
|
||||
* @retval -1 Error
|
||||
* Assume xt:s children are sorted and yang populated.
|
||||
* The function does two different things of the children of an XML node:
|
||||
* (1) Check min/max element constraints
|
||||
* (2) Check unique constraints
|
||||
*
|
||||
* The routine uses a node traversing mechanism as the following example, where
|
||||
* two lists [x1,..] and [x2,..] are embedded:
|
||||
* xt: {a, b, [x1, x1, x1], d, e, f, [x2, x2, x2], g}
|
||||
* The function does this using a single iteration and uses the fact that the
|
||||
* xml symbols share yang symbols: ie [x1..] has yang y1 and d has yd.
|
||||
*
|
||||
* Unique constraints:
|
||||
* Lists are identified, then check_unique_list is called on each list.
|
||||
* Example, x has an associated yang list node with list of unique constraints
|
||||
* y-list->y-unique - "a"
|
||||
* xt->x -> ab
|
||||
* x -> bc
|
||||
* x -> ab
|
||||
*
|
||||
* Min-max constraints:
|
||||
* Find upper and lower bound of existing lists and report violations
|
||||
* Somewhat tricky to find violation of min-elements of empty
|
||||
* lists, but this is done by a "gap-detection" mechanism, which detects
|
||||
* gaps in the xml nodes given the ancestor Yang structure.
|
||||
* But no gap analysis is done if the yang spec of the top-level xml is unknown
|
||||
* Example:
|
||||
* Yang structure:y1, y2, y3,
|
||||
* XML structure: [x1, x1], [x3, x3] where [x2] list is missing
|
||||
* @note min-element constraints on empty lists are not detected on top-level.
|
||||
* Or more specifically, if no yang spec if associated with the top-level
|
||||
* XML node. This may not be a large problem since it would mean empty configs
|
||||
* are not allowed.
|
||||
*/
|
||||
static int
|
||||
check_list_unique_minmax(cxobj *xt,
|
||||
cbuf *cbret)
|
||||
{
|
||||
int retval = -1;
|
||||
cxobj *x = NULL;
|
||||
yang_stmt *y;
|
||||
yang_stmt *yt;
|
||||
yang_stmt *yp = NULL; /* previous in list */
|
||||
yang_stmt *ye = NULL; /* yang each list to catch emtpy */
|
||||
yang_stmt *ych; /* y:s parent node (if choice that ye can compare to) */
|
||||
cxobj *xp = NULL; /* previous in list */
|
||||
yang_stmt *yu; /* yang unique */
|
||||
int ret;
|
||||
int nr=0; /* Nr of list elements for min/max check */
|
||||
enum rfc_6020 keyw;
|
||||
|
||||
/* RFC 7950 7.7.5: regarding min-max elements check
|
||||
* The behavior of the constraint depends on the type of the
|
||||
* leaf-list's or list's closest ancestor node in the schema tree
|
||||
* that is not a non-presence container (see Section 7.5.1):
|
||||
* o If no such ancestor exists in the schema tree, the constraint
|
||||
* is enforced.
|
||||
* o Otherwise, if this ancestor is a case node, the constraint is
|
||||
* enforced if any other node from the case exists.
|
||||
* o Otherwise, it is enforced if the ancestor node exists.
|
||||
*/
|
||||
yt = xml_spec(xt); /* If yt == NULL, then no gap-analysis is done */
|
||||
/* Traverse all elemenents */
|
||||
while ((x = xml_child_each(xt, x, CX_ELMNT)) != NULL) {
|
||||
if ((y = xml_spec(x)) == NULL)
|
||||
continue;
|
||||
if ((ych=yang_choice(y)) == NULL)
|
||||
ych = y;
|
||||
keyw = yang_keyword_get(y);
|
||||
if (keyw != Y_LIST && keyw != Y_LEAF_LIST)
|
||||
continue;
|
||||
if (yp != NULL){ /* There exists a previous (leaf)list */
|
||||
if (y == yp){ /* If same yang as previous x, then skip (eg same list) */
|
||||
nr++;
|
||||
continue;
|
||||
}
|
||||
else {
|
||||
/* Check if the list length violates min/max */
|
||||
if ((ret = check_min_max(xp, yp, nr, cbret)) < 0)
|
||||
goto done;
|
||||
if (ret == 0)
|
||||
goto fail;
|
||||
}
|
||||
}
|
||||
yp = y; /* Restart min/max count */
|
||||
xp = x; /* Need a reference to the XML as well */
|
||||
nr = 1;
|
||||
/* Gap analysis: Check if there is any empty list between y and yp
|
||||
* Note, does not detect empty choice list (too complicated)
|
||||
*/
|
||||
if (yt != NULL && ych != ye){
|
||||
/* Skip analysis if Yang spec is unknown OR
|
||||
* if we are still iterating the same Y_CASE w multiple lists
|
||||
*/
|
||||
ye = yn_each(yt, ye);
|
||||
if (ye && ych != ye)
|
||||
do {
|
||||
if (yang_keyword_get(ye) == Y_LIST || yang_keyword_get(ye) == Y_LEAF_LIST){
|
||||
/* Check if the list length violates min/max */
|
||||
if ((ret = check_min_max(xt, ye, 0, cbret)) < 0)
|
||||
goto done;
|
||||
if (ret == 0)
|
||||
goto fail;
|
||||
}
|
||||
ye = yn_each(yt, ye);
|
||||
} while(ye != NULL && /* to avoid livelock (shouldnt happen) */
|
||||
ye != ych);
|
||||
}
|
||||
if (keyw != Y_LIST)
|
||||
continue;
|
||||
/* Here only lists. test unique constraints */
|
||||
yu = NULL;
|
||||
while ((yu = yn_each(y, yu)) != NULL) {
|
||||
if (yang_keyword_get(yu) != Y_UNIQUE)
|
||||
continue;
|
||||
/* Here is a list w unique constraints identified by:
|
||||
* its first element x, its yang spec y, its parent xt, and
|
||||
* a unique yang spec yu,
|
||||
*/
|
||||
if ((ret = check_unique_list(x, xt, y, yu, cbret)) < 0)
|
||||
goto done;
|
||||
if (ret == 0)
|
||||
goto fail;
|
||||
}
|
||||
}
|
||||
/* yp if set, is a list that has been traversed
|
||||
* This check is made in the loop as well - this is for the last list
|
||||
*/
|
||||
if (yp){
|
||||
/* Check if the list length violates min/max */
|
||||
if ((ret = check_min_max(xp, yp, nr, cbret)) < 0)
|
||||
goto done;
|
||||
if (ret == 0)
|
||||
goto fail;
|
||||
}
|
||||
/* Check if there is any empty list between after last non-empty list
|
||||
* Note, does not detect empty lists within choice/case (too complicated)
|
||||
*/
|
||||
if ((ye = yn_each(yt, ye)) != NULL)
|
||||
do {
|
||||
if (yang_keyword_get(ye) == Y_LIST || yang_keyword_get(ye) == Y_LEAF_LIST){
|
||||
/* Check if the list length violates min/max */
|
||||
if ((ret = check_min_max(xt, ye, 0, cbret)) < 0)
|
||||
goto done;
|
||||
if (ret == 0)
|
||||
goto fail;
|
||||
}
|
||||
} while((ye = yn_each(yt, ye)) != NULL);
|
||||
retval = 1;
|
||||
done:
|
||||
return retval;
|
||||
fail:
|
||||
retval = 0;
|
||||
goto done;
|
||||
}
|
||||
|
||||
/*! Validate a single XML node with yang specification for added entry
|
||||
* 1. Check if mandatory leafs present as subs.
|
||||
* 2. Check leaf values, eg int ranges and string regexps.
|
||||
|
|
@ -850,9 +1188,9 @@ xml_yang_validate_all(cxobj *xt,
|
|||
goto done;
|
||||
goto fail;
|
||||
}
|
||||
if (ys != NULL && yang_config(ys) != 0){
|
||||
if (yang_config(ys) != 0){
|
||||
/* Node-specific validation */
|
||||
switch (ys->ys_keyword){
|
||||
switch (yang_keyword_get(ys)){
|
||||
case Y_ANYXML:
|
||||
case Y_ANYDATA:
|
||||
goto ok;
|
||||
|
|
@ -872,33 +1210,6 @@ xml_yang_validate_all(cxobj *xt,
|
|||
if (validate_identityref(xt, ys, yc, cbret) < 0)
|
||||
goto done;
|
||||
}
|
||||
}
|
||||
if ((yc = yang_find(ys, Y_MIN_ELEMENTS, NULL)) != NULL){
|
||||
/* The behavior of the constraint depends on the type of the
|
||||
* leaf-list's or list's closest ancestor node in the schema tree
|
||||
* that is not a non-presence container (see Section 7.5.1):
|
||||
* o If no such ancestor exists in the schema tree, the constraint
|
||||
* is enforced.
|
||||
* o Otherwise, if this ancestor is a case node, the constraint is
|
||||
* enforced if any other node from the case exists.
|
||||
* o Otherwise, it is enforced if the ancestor node exists.
|
||||
*/
|
||||
#if 0
|
||||
cxobj *xp;
|
||||
cxobj *x;
|
||||
int i;
|
||||
|
||||
if ((xp = xml_parent(xt)) != NULL){
|
||||
nr = atoi(yc->ys_argument);
|
||||
x = NULL;
|
||||
i = 0;
|
||||
while ((x = xml_child_each(xt, x, CX_ELMNT)) != NULL)
|
||||
i++;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
if ((yc = yang_find(ys, Y_MAX_ELEMENTS, NULL)) != NULL){
|
||||
|
||||
}
|
||||
break;
|
||||
default:
|
||||
|
|
@ -941,6 +1252,14 @@ xml_yang_validate_all(cxobj *xt,
|
|||
if (ret == 0)
|
||||
goto fail;
|
||||
}
|
||||
/* Check unique and min-max after choice test for example*/
|
||||
if (yang_config(ys) != 0){
|
||||
/* Checks if next level contains any unique list constraints */
|
||||
if ((ret = check_list_unique_minmax(xt, cbret)) < 0)
|
||||
goto done;
|
||||
if (ret == 0)
|
||||
goto fail;
|
||||
}
|
||||
ok:
|
||||
retval = 1;
|
||||
done:
|
||||
|
|
@ -961,12 +1280,14 @@ xml_yang_validate_all_top(cxobj *xt,
|
|||
{
|
||||
int ret;
|
||||
cxobj *x;
|
||||
|
||||
|
||||
x = NULL;
|
||||
while ((x = xml_child_each(xt, x, CX_ELMNT)) != NULL) {
|
||||
if ((ret = xml_yang_validate_all(x, cbret)) < 1)
|
||||
return ret;
|
||||
}
|
||||
if ((ret = check_list_unique_minmax(xt, cbret)) < 1)
|
||||
return ret;
|
||||
return 1;
|
||||
}
|
||||
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue