Refactored YANG min/max validation code, created new clixon_validate_minmax.[ch]
Added new recursive minmax check for non-presence containers This makes validation checks stricter, including check of incoming RPCs Renamed xml_yang_check_list_unique_minmax() to xml_yang_minmax_recurse() Fixed again: [YANG min-elements within non-presence container does not work](https://github.com/clicon/clixon/issues/355)
This commit is contained in:
parent
c8bf718db8
commit
2eb9c6cda1
17 changed files with 867 additions and 614 deletions
|
|
@ -34,9 +34,7 @@
|
|||
***** END LICENSE BLOCK *****
|
||||
|
||||
*
|
||||
* XML code
|
||||
*
|
||||
* "api-path" is "URI-encoded path expression" definition in RFC8040 3.5.3
|
||||
* Check YANG validation
|
||||
*/
|
||||
#ifdef HAVE_CONFIG_H
|
||||
#include "clixon_config.h" /* generated by config & autoconf */
|
||||
|
|
@ -79,6 +77,7 @@
|
|||
#include "clixon_yang_type.h"
|
||||
#include "clixon_xml_map.h"
|
||||
#include "clixon_xml_bind.h"
|
||||
#include "clixon_validate_minmax.h"
|
||||
#include "clixon_validate.h"
|
||||
|
||||
/*! Validate xml node of type leafref, ensure the value is one of that path's reference
|
||||
|
|
@ -871,582 +870,6 @@ check_mandatory(cxobj *xt,
|
|||
goto done;
|
||||
}
|
||||
|
||||
/*! New element last in list, check if already exists if sp return -1
|
||||
* @param[in] vec Vector of existing entries (new is last)
|
||||
* @param[in] i1 The new entry is placed at vec[i1]
|
||||
* @param[in] vlen Lenght of entry
|
||||
* @param[in] sorted Sorted by system, ie sorted by key, otherwise no assumption
|
||||
* @retval 0 OK, entry is unique
|
||||
* @retval -1 Duplicate detected
|
||||
* @note This is currently quadratic complexity. It could be improved by inserting new element sorted and binary search.
|
||||
* @retval 1 Validation OK
|
||||
* @retval 0 Validation failed (cbret set)
|
||||
* @retval -1 Error
|
||||
*/
|
||||
static int
|
||||
unique_search_xpath(cxobj *x,
|
||||
char *xpath,
|
||||
cvec *nsc,
|
||||
char ***svec,
|
||||
size_t *slen)
|
||||
{
|
||||
int retval = -1;
|
||||
cxobj **xvec = NULL;
|
||||
size_t xveclen;
|
||||
int i;
|
||||
int s;
|
||||
cxobj *xi;
|
||||
char *bi;
|
||||
|
||||
/* Collect tuples */
|
||||
if (xpath_vec(x, nsc, "%s", &xvec, &xveclen, xpath) < 0)
|
||||
goto done;
|
||||
for (i=0; i<xveclen; i++){
|
||||
xi = xvec[i];
|
||||
if ((bi = xml_body(xi)) == NULL)
|
||||
break;
|
||||
/* Check if bi is duplicate?
|
||||
* XXX: sort svec?
|
||||
*/
|
||||
for (s=0; s<(*slen); s++){
|
||||
if (strcmp(bi, (*svec)[s]) == 0){
|
||||
goto fail;
|
||||
}
|
||||
}
|
||||
(*slen) ++;
|
||||
if (((*svec) = realloc((*svec), (*slen)*sizeof(char*))) == NULL){
|
||||
clicon_err(OE_UNIX, errno, "realloc");
|
||||
goto done;
|
||||
}
|
||||
(*svec)[(*slen)-1] = bi;
|
||||
} /* i search results */
|
||||
retval = 1;
|
||||
done:
|
||||
if (xvec)
|
||||
free(xvec);
|
||||
return retval;
|
||||
fail:
|
||||
retval = 0;
|
||||
goto done;
|
||||
}
|
||||
|
||||
/*! New element last in list, check if already exists if sp return -1
|
||||
* @param[in] vec Vector of existing entries (new is last)
|
||||
* @param[in] i1 The new entry is placed at vec[i1]
|
||||
* @param[in] vlen Lenght of entry
|
||||
* @param[in] sorted Sorted by system, ie sorted by key, otherwise no assumption
|
||||
* @retval 0 OK, entry is unique
|
||||
* @retval -1 Duplicate detected
|
||||
* @note This is currently quadratic complexity. It could be improved by inserting new element sorted and binary search.
|
||||
* @retval 1 Validation OK
|
||||
* @retval 0 Validation failed (cbret set)
|
||||
* @retval -1 Error
|
||||
*/
|
||||
static int
|
||||
check_insert_duplicate(char **vec,
|
||||
int i1,
|
||||
int vlen,
|
||||
int sorted)
|
||||
{
|
||||
int i;
|
||||
int v;
|
||||
char *b;
|
||||
|
||||
if (sorted){
|
||||
/* Just go look at previous element to see if it is duplicate (sorted by system) */
|
||||
if (i1 == 0)
|
||||
return 0;
|
||||
i = i1-1;
|
||||
for (v=0; v<vlen; v++){
|
||||
b = vec[i*vlen+v];
|
||||
if (b == NULL || strcmp(b, vec[i1*vlen+v]))
|
||||
return 0;
|
||||
}
|
||||
/* here we have passed thru all keys of previous element and they are all equal */
|
||||
return -1;
|
||||
}
|
||||
else{
|
||||
for (i=0; i<i1; i++){
|
||||
for (v=0; v<vlen; v++){
|
||||
b = vec[i*vlen+v];
|
||||
if (b == NULL || strcmp(b, vec[i1*vlen+v]))
|
||||
break;
|
||||
}
|
||||
if (v==vlen) /* duplicate */
|
||||
break;
|
||||
}
|
||||
return i==i1?0:-1;
|
||||
}
|
||||
}
|
||||
|
||||
/*! Given a list with unique constraint, detect duplicates
|
||||
* @param[in] x The first element in the list (on return the last)
|
||||
* @param[in] xt The parent of x (a list)
|
||||
* @param[in] y Its yang spec (Y_LIST)
|
||||
* @param[in] yu A yang unique (Y_UNIQUE) for unique schema node ids or (Y_LIST) for list keys
|
||||
* @param[out] xret Error XML tree. Free with xml_free after use
|
||||
* @retval 1 Validation OK
|
||||
* @retval 0 Validation failed (cbret set)
|
||||
* @retval -1 Error
|
||||
* Discussion: the RFC 7950 Sec 7.8.3: "constraints on valid list entries"
|
||||
* The arguments are "descendant schema node identifiers". A direct interpretation is that
|
||||
* this is for "direct" descendants, but it does not rule out transient descendants.
|
||||
* The implementation supports two variants:
|
||||
* 1) list of direct descendants, eg "a b"
|
||||
* 2) single transient schema node identifier, eg "a/b"
|
||||
* The problem with combining (1) and (2) is that (2) results in a potential set of results, what
|
||||
* would unique "a/b c/d" mean if both a/b and c/d returns a set?
|
||||
* For (1):
|
||||
* All key leafs MUST be present for all list entries.
|
||||
* The combined values of all the leafs specified in the key are used to
|
||||
* uniquely identify a list entry. All key leafs MUST be given values
|
||||
* when a list entry is created.
|
||||
*/
|
||||
static int
|
||||
check_unique_list_direct(cxobj *x,
|
||||
cxobj *xt,
|
||||
yang_stmt *y,
|
||||
yang_stmt *yu,
|
||||
cxobj **xret)
|
||||
{
|
||||
int retval = -1;
|
||||
cg_var *cvi; /* unique node name */
|
||||
cxobj *xi;
|
||||
char **vec = NULL; /* 2xmatrix */
|
||||
int clen;
|
||||
int i;
|
||||
int v;
|
||||
char *bi;
|
||||
int sorted;
|
||||
char *str;
|
||||
cvec *cvk;
|
||||
|
||||
cvk = yang_cvec_get(yu);
|
||||
/* If list and is sorted by system, then it is assumed elements are in key-order which is optimized
|
||||
* Other cases are "unique" constraint or list sorted by user which is quadratic in complexity
|
||||
* This second case COULD be optimized if binary insert is made on the vec vector.
|
||||
*/
|
||||
sorted = (yang_keyword_get(yu) == Y_LIST &&
|
||||
yang_find(y, Y_ORDERED_BY, "user") == NULL);
|
||||
cvk = yang_cvec_get(yu);
|
||||
/* nr of unique elements to check */
|
||||
if ((clen = cvec_len(cvk)) == 0){
|
||||
/* No keys: no checks necessary */
|
||||
goto ok;
|
||||
}
|
||||
if ((vec = calloc(clen*xml_child_nr(xt), sizeof(char*))) == NULL){
|
||||
clicon_err(OE_UNIX, errno, "calloc");
|
||||
goto done;
|
||||
}
|
||||
/* A vector is built with key-values, for each iteration check "backward" in the vector
|
||||
* for duplicates
|
||||
*/
|
||||
i = 0; /* x element index */
|
||||
do {
|
||||
cvi = NULL;
|
||||
v = 0; /* index in each tuple */
|
||||
/* XXX Quadratic if clen > 1 */
|
||||
while ((cvi = cvec_each(cvk, cvi)) != NULL){
|
||||
/* RFC7950: Sec 7.8.3.1: entries that do not have value for all
|
||||
* referenced leafs are not taken into account */
|
||||
str = cv_string_get(cvi);
|
||||
if (index(str, '/') != NULL){
|
||||
clicon_err(OE_YANG, 0, "Multiple descendant nodes not allowed (w /)");
|
||||
goto done;
|
||||
}
|
||||
if ((xi = xml_find(x, str)) == NULL)
|
||||
break;
|
||||
if ((bi = xml_body(xi)) == NULL)
|
||||
break;
|
||||
vec[i*clen + v++] = bi;
|
||||
}
|
||||
if (cvi==NULL){
|
||||
/* Last element (i) is newly inserted, see if it is already there */
|
||||
if (check_insert_duplicate(vec, i, clen, sorted) < 0){
|
||||
if (xret && netconf_data_not_unique_xml(xret, x, cvk) < 0)
|
||||
goto done;
|
||||
goto fail;
|
||||
}
|
||||
}
|
||||
x = xml_child_each(xt, x, CX_ELMNT);
|
||||
i++;
|
||||
} while (x && y == xml_spec(x)); /* stop if list ends, others may follow */
|
||||
ok:
|
||||
/* It would be possible to cache vec here as an optimization */
|
||||
retval = 1;
|
||||
done:
|
||||
if (vec)
|
||||
free(vec);
|
||||
return retval;
|
||||
fail:
|
||||
retval = 0;
|
||||
goto done;
|
||||
}
|
||||
|
||||
/*! Given a list with unique constraint, detect duplicates
|
||||
* @param[in] x The first element in the list (on return the last)
|
||||
* @param[in] xt The parent of x (a list)
|
||||
* @param[in] y Its yang spec (Y_LIST)
|
||||
* @param[in] yu A yang unique (Y_UNIQUE) for unique schema node ids or (Y_LIST) for list keys
|
||||
* @param[out] xret Error XML tree. Free with xml_free after use
|
||||
* @retval 1 Validation OK
|
||||
* @retval 0 Validation failed (xret set)
|
||||
* @retval -1 Error
|
||||
* Discussion: the RFC 7950 Sec 7.8.3: "constraints on valid list entries"
|
||||
* The arguments are "descendant schema node identifiers". A direct interpretation is that
|
||||
* this is for "direct" descendants, but it does not rule out transient descendants.
|
||||
* The implementation supports two variants:
|
||||
* 1) list of direct descendants, eg "a b"
|
||||
* 2) single transient schema node identifier, eg "a/b"
|
||||
* The problem with combining (1) and (2) is that (2) results in a potential set of results, what
|
||||
* would unique "a/b c/d" mean if both a/b and c/d returns a set?
|
||||
* For (1):
|
||||
* All key leafs MUST be present for all list entries.
|
||||
* The combined values of all the leafs specified in the key are used to
|
||||
* uniquely identify a list entry. All key leafs MUST be given values
|
||||
* when a list entry is created.
|
||||
*/
|
||||
static int
|
||||
check_unique_list(cxobj *x,
|
||||
cxobj *xt,
|
||||
yang_stmt *y,
|
||||
yang_stmt *yu,
|
||||
cxobj **xret)
|
||||
{
|
||||
int retval = -1;
|
||||
cg_var *cvi; /* unique node name */
|
||||
char **svec = NULL; /* vector of search results */
|
||||
size_t slen = 0;
|
||||
char *xpath0 = NULL;
|
||||
char *xpath1 = NULL;
|
||||
int ret;
|
||||
cvec *cvk;
|
||||
cvec *nsc0 = NULL;
|
||||
cvec *nsc1 = NULL;
|
||||
|
||||
/* Check if multiple direct children */
|
||||
cvk = yang_cvec_get(yu);
|
||||
if (cvec_len(cvk) > 1){
|
||||
retval = check_unique_list_direct(x, xt, y, yu, xret);
|
||||
goto done;
|
||||
}
|
||||
cvi = cvec_i(cvk, 0);
|
||||
if (cvi == NULL || (xpath0 = cv_string_get(cvi)) == NULL){
|
||||
clicon_err(OE_YANG, 0, "No descendant schemanode");
|
||||
goto done;
|
||||
}
|
||||
/* Check if direct schmeanode-id , ie not xpath */
|
||||
if (index(xpath0, '/') == NULL){
|
||||
retval = check_unique_list_direct(x, xt, y, yu, xret);
|
||||
goto done;
|
||||
}
|
||||
/* Here proper xpath with at least one slash (can there be a descendant schemanodeid w/o slash?) */
|
||||
if (xml_nsctx_yang(yu, &nsc0) < 0)
|
||||
goto done;
|
||||
if ((ret = xpath2canonical(xpath0, nsc0, ys_spec(y),
|
||||
&xpath1, &nsc1, NULL)) < 0)
|
||||
goto done;
|
||||
if (ret == 0)
|
||||
goto fail; // XXX set xret
|
||||
do {
|
||||
/* Collect search results from one */
|
||||
if ((ret = unique_search_xpath(x, xpath1, nsc1, &svec, &slen)) < 0)
|
||||
goto done;
|
||||
if (ret == 0){
|
||||
if (xret && netconf_data_not_unique_xml(xret, x, cvk) < 0)
|
||||
goto done;
|
||||
goto fail;
|
||||
}
|
||||
x = xml_child_each(xt, x, CX_ELMNT);
|
||||
} while (x && y == xml_spec(x)); /* stop if list ends, others may follow */
|
||||
// ok:
|
||||
/* It would be possible to cache vec here as an optimization */
|
||||
retval = 1;
|
||||
done:
|
||||
if (nsc0)
|
||||
cvec_free(nsc0);
|
||||
if (nsc1)
|
||||
cvec_free(nsc1);
|
||||
if (xpath1)
|
||||
free(xpath1);
|
||||
if (svec)
|
||||
free(svec);
|
||||
return retval;
|
||||
fail:
|
||||
retval = 0;
|
||||
goto done;
|
||||
}
|
||||
|
||||
/*! Given a list, check if any min/max-elemants constraints apply
|
||||
* @param[in] xp Parent of the xml list there are too few/many
|
||||
* @param[in] y Yang spec of the failing list
|
||||
* @param[in] nr Number of elements (like x) in the list
|
||||
* @param[out] xret Error XML tree. Free with xml_free after use
|
||||
* @retval 1 Validation OK
|
||||
* @retval 0 Validation failed (cbret set)
|
||||
* @retval -1 Error
|
||||
* @see RFC7950 7.7.5
|
||||
*/
|
||||
static int
|
||||
check_min_max(cxobj *xp,
|
||||
yang_stmt *y,
|
||||
int nr,
|
||||
cxobj **xret)
|
||||
{
|
||||
int retval = -1;
|
||||
yang_stmt *ymin; /* yang min */
|
||||
yang_stmt *ymax; /* yang max */
|
||||
cg_var *cv;
|
||||
|
||||
if ((ymin = yang_find(y, Y_MIN_ELEMENTS, NULL)) != NULL){
|
||||
cv = yang_cv_get(ymin);
|
||||
if (nr < cv_uint32_get(cv)){
|
||||
if (xret && netconf_minmax_elements_xml(xret, xp, yang_argument_get(y), 0) < 0)
|
||||
goto done;
|
||||
goto fail;
|
||||
}
|
||||
}
|
||||
if ((ymax = yang_find(y, Y_MAX_ELEMENTS, NULL)) != NULL){
|
||||
cv = yang_cv_get(ymax);
|
||||
if (cv_uint32_get(cv) > 0 && /* 0 means unbounded */
|
||||
nr > cv_uint32_get(cv)){
|
||||
if (xret && netconf_minmax_elements_xml(xret, xp, yang_argument_get(y), 1) < 0)
|
||||
goto done;
|
||||
goto fail;
|
||||
}
|
||||
}
|
||||
retval = 1;
|
||||
done:
|
||||
return retval;
|
||||
fail:
|
||||
retval = 0;
|
||||
goto done;
|
||||
}
|
||||
|
||||
/*! Check if there is any empty list (no x elements) and check min-elements
|
||||
* Note recurse for non-presence container
|
||||
* @param[in] xt XML node
|
||||
* @param[in] yt YANG node
|
||||
* @param[out] xret Error XML tree. Free with xml_free after use
|
||||
* @retval 1 Validation OK
|
||||
* @retval 0 Validation failed (xret set)
|
||||
* @retval -1 Error
|
||||
*/
|
||||
static int
|
||||
check_empty_list_minmax(cxobj *xt,
|
||||
yang_stmt *ye,
|
||||
cxobj **xret)
|
||||
{
|
||||
int retval = -1;
|
||||
int ret;
|
||||
yang_stmt *yprev = NULL;
|
||||
|
||||
if (yang_config(ye) == 1){
|
||||
if(yang_keyword_get(ye) == Y_CONTAINER &&
|
||||
yang_find(ye, Y_PRESENCE, NULL) == NULL){
|
||||
yprev = NULL;
|
||||
while ((yprev = yn_each(ye, yprev)) != NULL) {
|
||||
if ((ret = check_empty_list_minmax(xt, yprev, xret)) < 0)
|
||||
goto done;
|
||||
if (ret == 0)
|
||||
goto fail;
|
||||
}
|
||||
}
|
||||
else if (yang_keyword_get(ye) == Y_LIST ||
|
||||
yang_keyword_get(ye) == Y_LEAF_LIST){
|
||||
/* Check if the list length violates min/max */
|
||||
if ((ret = check_min_max(xt, ye, 0, xret)) < 0)
|
||||
goto done;
|
||||
if (ret == 0)
|
||||
goto fail;
|
||||
}
|
||||
}
|
||||
retval = 1;
|
||||
done:
|
||||
return retval;
|
||||
fail:
|
||||
retval = 0;
|
||||
goto done;
|
||||
}
|
||||
|
||||
/*! Detect unique constraint for duplicates from parent node and minmax
|
||||
* @param[in] xt XML parent (may have lists w unique constraints as child)
|
||||
* @param[out] xret Error XML tree. Free with xml_free after use
|
||||
* @retval 1 Validation OK
|
||||
* @retval 0 Validation failed (xret set)
|
||||
* @retval -1 Error
|
||||
* Assume xt:s children are sorted and yang populated.
|
||||
* The function does two different things of the children of an XML node:
|
||||
* (1) Check min/max element constraints
|
||||
* (2) Check unique constraints
|
||||
*
|
||||
* The routine uses a node traversing mechanism as the following example, where
|
||||
* two lists [x1,..] and [x2,..] are embedded:
|
||||
* xt: {a, b, [x1, x1, x1], d, e, f, [x2, x2, x2], g}
|
||||
* The function does this using a single iteration and uses the fact that the
|
||||
* xml symbols share yang symbols: ie [x1..] has yang y1 and d has yd.
|
||||
*
|
||||
* Unique constraints:
|
||||
* Lists are identified, then check_unique_list is called on each list.
|
||||
* Example, x has an associated yang list node with list of unique constraints
|
||||
* y-list->y-unique - "a"
|
||||
* xt->x -> ab
|
||||
* x -> bc
|
||||
* x -> ab
|
||||
*
|
||||
* Min-max constraints:
|
||||
* Find upper and lower bound of existing lists and report violations
|
||||
* Somewhat tricky to find violation of min-elements of empty
|
||||
* lists, but this is done by a "gap-detection" mechanism, which detects
|
||||
* gaps in the xml nodes given the ancestor Yang structure.
|
||||
* But no gap analysis is done if the yang spec of the top-level xml is unknown
|
||||
* Example:
|
||||
* Yang structure: y1, y2, y3,
|
||||
* XML structure: [x1, x1], [x3, x3] where [x2] list is missing
|
||||
* @note min-element constraints on empty lists are not detected on top-level.
|
||||
* Or more specifically, if no yang spec if associated with the top-level
|
||||
* XML node. This may not be a large problem since it would mean empty configs
|
||||
* are not allowed.
|
||||
*/
|
||||
int
|
||||
xml_yang_check_list_unique_minmax(cxobj *xt,
|
||||
cxobj **xret)
|
||||
{
|
||||
int retval = -1;
|
||||
cxobj *x = NULL;
|
||||
yang_stmt *y;
|
||||
yang_stmt *yt;
|
||||
yang_stmt *yprev = NULL; /* previous in list */
|
||||
yang_stmt *ye = NULL; /* yang each list to catch emtpy */
|
||||
yang_stmt *ych; /* y:s parent node (if choice that ye can compare to) */
|
||||
yang_stmt *yu; /* yang unique */
|
||||
int ret;
|
||||
int nr=0; /* Nr of list elements for min/max check */
|
||||
enum rfc_6020 keyw;
|
||||
|
||||
/* RFC 7950 7.7.5: regarding min-max elements check
|
||||
* The behavior of the constraint depends on the type of the
|
||||
* leaf-list's or list's closest ancestor node in the schema tree
|
||||
* that is not a non-presence container (see Section 7.5.1):
|
||||
* o If no such ancestor exists in the schema tree, the constraint
|
||||
* is enforced.
|
||||
* o Otherwise, if this ancestor is a case node, the constraint is
|
||||
* enforced if any other node from the case exists.
|
||||
* o Otherwise, it is enforced if the ancestor node exists.
|
||||
*/
|
||||
yt = xml_spec(xt); /* If yt == NULL, then no gap-analysis is done */
|
||||
/* Traverse all elements */
|
||||
while ((x = xml_child_each(xt, x, CX_ELMNT)) != NULL) {
|
||||
if ((y = xml_spec(x)) == NULL)
|
||||
continue;
|
||||
if ((ych = yang_choice(y)) == NULL)
|
||||
ych = y;
|
||||
keyw = yang_keyword_get(y);
|
||||
if (keyw != Y_LIST && keyw != Y_LEAF_LIST){
|
||||
if (yprev != NULL && y == yprev){
|
||||
/* Only lists and leaf-lists are allowed to be many
|
||||
* This checks duplicate container and leafs
|
||||
*/
|
||||
if (xret && netconf_minmax_elements_xml(xret, xt, xml_name(x), 1) < 0)
|
||||
goto done;
|
||||
goto fail;
|
||||
}
|
||||
yprev = y; /* Restart min/max count */
|
||||
continue;
|
||||
}
|
||||
/* Here only (leaf)lists */
|
||||
if (yprev != NULL){ /* There exists a previous (leaf)list */
|
||||
if (y == yprev){ /* If same yang as previous x, then skip (eg same list) */
|
||||
nr++;
|
||||
continue;
|
||||
}
|
||||
else {
|
||||
/* Check if the list length violates min/max */
|
||||
if ((ret = check_min_max(xt, yprev, nr, xret)) < 0)
|
||||
goto done;
|
||||
if (ret == 0)
|
||||
goto fail;
|
||||
}
|
||||
}
|
||||
/* Here is only new list / leaf-list */
|
||||
yprev = y; /* Restart min/max count */
|
||||
nr = 1;
|
||||
/* Gap analysis: Check if there is any empty list between y and yprev
|
||||
* Note, does not detect empty choice list (too complicated)
|
||||
*/
|
||||
if (yt != NULL && ych != ye){
|
||||
/* Skip analysis if Yang spec is unknown OR
|
||||
* if we are still iterating the same Y_CASE w multiple lists
|
||||
*/
|
||||
ye = yn_each(yt, ye);
|
||||
if (ye && ych != ye)
|
||||
do {
|
||||
if ((ret = check_empty_list_minmax(xt, ye, xret)) < 0)
|
||||
goto done;
|
||||
if (ret == 0)
|
||||
goto fail;
|
||||
ye = yn_each(yt, ye);
|
||||
} while(ye != NULL && /* to avoid livelock (shouldnt happen) */
|
||||
ye != ych);
|
||||
}
|
||||
if (keyw != Y_LIST)
|
||||
continue;
|
||||
/* Here new (first element) of lists only
|
||||
* First check unique keys direct children
|
||||
*/
|
||||
if ((ret = check_unique_list_direct(x, xt, y, y, xret)) < 0)
|
||||
goto done;
|
||||
if (ret == 0)
|
||||
goto fail;
|
||||
/* Check if there is a unique constraint on the list
|
||||
*/
|
||||
yu = NULL;
|
||||
while ((yu = yn_each(y, yu)) != NULL) {
|
||||
if (yang_keyword_get(yu) != Y_UNIQUE)
|
||||
continue;
|
||||
/* Here is a list w unique constraints identified by:
|
||||
* its first element x, its yang spec y, its parent xt, and
|
||||
* a unique yang spec yu,
|
||||
* Two cases:
|
||||
* 1) multiple direct children (no prefixes), eg "a b"
|
||||
* 2) single xpath with canonical prefixes, eg "/ex:a/ex:b"
|
||||
*/
|
||||
if ((ret = check_unique_list(x, xt, y, yu, xret)) < 0)
|
||||
goto done;
|
||||
if (ret == 0)
|
||||
goto fail;
|
||||
}
|
||||
} /* while x */
|
||||
|
||||
/* yprev if set, is a list that has been traversed
|
||||
* This check is made in the loop as well - this is for the last list
|
||||
*/
|
||||
if (yprev){
|
||||
/* Check if the list length violates min/max */
|
||||
if ((ret = check_min_max(xt, yprev, nr, xret)) < 0)
|
||||
goto done;
|
||||
if (ret == 0)
|
||||
goto fail;
|
||||
}
|
||||
/* Check if there is any empty list between after last non-empty list
|
||||
* Note, does not detect empty lists within choice/case (too complicated)
|
||||
*/
|
||||
if ((ye = yn_each(yt, ye)) != NULL){
|
||||
do {
|
||||
if ((ret = check_empty_list_minmax(xt, ye, xret)) < 0)
|
||||
goto done;
|
||||
if (ret == 0)
|
||||
goto fail;
|
||||
} while((ye = yn_each(yt, ye)) != NULL);
|
||||
}
|
||||
retval = 1;
|
||||
done:
|
||||
return retval;
|
||||
fail:
|
||||
retval = 0;
|
||||
goto done;
|
||||
}
|
||||
|
||||
/*! Validate a single XML node with yang specification for added entry
|
||||
* 1. Check if mandatory leafs present as subs.
|
||||
* 2. Check leaf values, eg int ranges and string regexps.
|
||||
|
|
@ -1808,7 +1231,7 @@ xml_yang_validate_all(clicon_handle h,
|
|||
/* Check unique and min-max after choice test for example*/
|
||||
if (yang_config(yt) != 0){
|
||||
/* Checks if next level contains any unique list constraints */
|
||||
if ((ret = xml_yang_check_list_unique_minmax(xt, xret)) < 0)
|
||||
if ((ret = xml_yang_minmax_recurse(xt, xret)) < 0)
|
||||
goto done;
|
||||
if (ret == 0)
|
||||
goto fail;
|
||||
|
|
@ -1845,7 +1268,7 @@ xml_yang_validate_all_top(clicon_handle h,
|
|||
if ((ret = xml_yang_validate_all(h, x, xret)) < 1)
|
||||
return ret;
|
||||
}
|
||||
if ((ret = xml_yang_check_list_unique_minmax(xt, xret)) < 1)
|
||||
if ((ret = xml_yang_minmax_recurse(xt, xret)) < 1)
|
||||
return ret;
|
||||
return 1;
|
||||
}
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue